
It is evident that for any �nite set rcnx of points in the complex plane, we
can associate a polynomial p�z� �4n �z � cn� whose zeros are precisely those
points in the set. Conversely, as a consequence of the Fundamental Theorem of
Algebra, any polynomial function p�z� in the complex plane can be factored as
p�z� � a4n�z � cn� where a is a non-zero constant and rcnx is the set of zeros
of p�z�.

Weierstrass Factorization Theorem studies what happens when the set
is not �nite. It provides representations of entire functions, as products involving
their zeros.

Remark 1. Inspiration for this lesson comes mainly from [1].

We start with some simpler cases:

Theorem 1. If an entire function f�z� has no zeros, then f�z� � e
g�z�

for
some entire function g�z�.
Proof. De�ne the function h�z� as the logarithmic derivative of f�z�:

h�z� � f
¬�z�
f�z� �

d

dz
log f�z�

h�z� is entire, as f�z� has no zeros, therefore:

E z

0
h�s�ds � log f�s�¶z0 � log f�z� � log f�0�

�

log f�z� � E z

0
h�s�ds � log f�0�
�

f�z� � e
Dz

0
h�s�ds�log f�0�

� e
g�z�

.
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Theorem 2. If an entire function f�z� has a �nite number of zeros, say
z1,�, zm, with kj, j � 1,�m the order of zj. Then f�z� is of the form:

f�z� � �z � z1�k1
��z � zm�kme

g�z�

where g�z� is an entire function.

Proof. Simply note that the function:

F �z� � f�z�
�z � z1�k1��z � zm�km

is an entire function with no zeros. Hence Theorem 1 implies F �z� � e
g�z�

and
the result follows.

Remark 2. It is evident that Theorem 1 is a special case of Theorem 2.

Let's tackle now the case of entire functions with an in�nite number of zeros,
say z1, z2,�, zn,�.
To do this, we need to de�ne and studyWeierstrass's elementary Functions:

E0�z� � �1 � z�, El�z� � �1 � z�ez� z
2

2
���

z
l

l , l � 1, 2,�

Theorem 3. Each elementary function El�z�, l � 0, 1, 2,� is an entire func-
tion with a simple zero at z � 1. Also:

1. E
¬

l�z� � �zlez� z
2

2
���

z
l

l .

2. If El�z� � <�j�0 ajzz is the power series expansion of El�z� about z � 0,
then a0 � 1, a1 � a2 �� � al � 0 and aj & 0 for j % l.

3. If ¶z¶ & 1, then ¶El�z� � 1¶ & ¶z¶l�1.
Proof. 1.

d

dz
El�z� � �ez� z

2

2
���

z
l

l � e
z� z

2

2
���

z
l

l �1 � z � z
2
��� z

l�1��1 � z�
� �z

l
e
z� z

2

2
���

z
l

l .

(1)

2. The coe�cients of the power series expansion of an analytic function f
about z � c are:

an �
f�c�
n!

.

Therefore a0 � E�0� � 1. On the other hand, E
¬

l�z� has a zero of mul-
tiplicity l at 0, hence, since term-by-term di�erentiation is permissible, it
follows that:

aj �
E

j
l �0�
j!

� 0, for j � 1, 2,�, l

where E
j
l �z� is the j�th derivative of El�z�.

For j % l, we can see that in the expansion of E
¬

l�z� � �zlez� z
2

2
���

z
l

l the
coe�cient of each z

j
is a nonpositive real number.
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3. Using part 2. we know that:

¶El�z��1¶ �
»»»»»»»»»»
�

=
j�0

ajz
j
� 1

»»»»»»»»»»
�

»»»»»»»»»»
�

=
j�l�1

aj

»»»»»»»»»»
&

�

=
j�l�1

¶aj¶¶z¶j & ¶z¶l�1
�

=
j�l�1

��aj�¶z¶j�l�1.

Notice now that El�1� � 0 � 1 �<�j�l�1 aj � �<�j�l�1 aj � 1. Hence, for
¶z¶ & 1:

¶El�z� � 1¶ & ¶z¶l�1
�

=
j�l�1

��aj�¶z¶j�l�1 & ¶z¶l�1
�

=
j�l�1

��aj� � ¶z¶l�1.

Lemma 1. Let rznx be a sequence of complex numbers such that: zn j 0,
n � 1, 2,� and ¶zn¶�� as n��.

Then, there exists a sequence of nonnegative integers rlnx such that the series

<�j�1 »»»»»»
z
zj

»»»»»»
lj�1

is uniformly convergent on every closed disk B�0, r�, r $�.

Proof. Fix ln � n � 1 for n � 1, 2,�. Since ¶zn¶ � � as n � �, there exists
N large enough so that ¶zn¶ ' 2r for n ' N . For all these n and for ¶z¶ & r (i.e.

z " B�0, r�), we have:
»»»»»»
z
zn

»»»»»»
ln�1

�
»»»»»»
z
zn

»»»»»»
n

& � r

2r
	n � 1

2n
.

This proves that we can use Weierstrass's M-Test to conclude that the series
is uniformly convergent in B�0, r�.

We can �nally state the main Theorem:

Theorem 4. Weierstrass's Factorization Theorem

Let rznx be a sequence of complex numbers such that zn j 0 for n � 1, 2,� and
¶zn¶�� as n��. Let m be a nonnegative integer. Furthermore, let rlnx be

a sequence of nonnegative integers such that the series <�j�1 »»»»»»
z
zj

»»»»»»
lj�1

converges

uniformly on compact subsets of the complex plane. (Notice that Lemma 1
implies that such rlnx can always be found). Then:

f�z� � z
m

�

5
j�1

Elj � z
zj


 (2)

is an entire function. This function has zeros at z � 0 of multiplicity m and at
each zj, j � 1, 2,� of multiplicity kj. Here kj is the number of times zj occurs
in the sequence rznx.
Remark 3. This Theorem is often stated in a di�erent manner, we discuss it
after the proof.
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Proof. Write Eln � z
zn

	 as:

Eln � z
zn

	 � 1 � �Eln � z
zn

	 � 1	
then the product in 2 converges uniformly and absolutely provided that the

series <�j�1 �Eln � z
zn

	 � 1	 converges uniformly and absolutely on every disk of

�nite radius.

Remark 4. This is a classic result in complex analysis, it can be found as
Theorem 42.6 of [1].

Let ¶z¶ & r. Then, given that ¶zn¶��, there exists N large enough so that
z
zn
& 1 for n ' N . Therefore, using point 3. of Theorem 3, we have

»»»»»»Eln � z
zn

	 � 1
»»»»»» &

»»»»»»
z
zn

»»»»»»
ln�1

.

Since we can choose ln as in lemma 1, it follows that the series <�j�1 »»»»»»
z
zj

»»»»»»
ln�1

converges uniformly on the closed disk B�0, r�, hence the series »»»»»»Eln � z
zn

	 � 1
»»»»»»

converges uniformly and absolutely on B�0, r�.
In conclusion, since r % 0 is arbitrary, we have proved that the series<�j�1 �Eln � z

zn
	 � 1	

converges uniformly and absolutely on every disk of �nite radius, therefore the
product in equation 2 converges and the limit function f�z� is entire and has
the prescribed zeros.

Remark 5. Notice that the sequence of positive integers rlnx is not necessarily
unique, hence, so is the representation 2.

Theorem 5. Let f�z� be an entire function with an in�nite number of roots,
let rρnx be the non-zero roots of f�z� repeated with multiplicity. Let g be the
order of the zero at z � 0. Then there exists a sequence of integers rlnx such
that:

f�z� � z
g
�

5
j�1

Elj � z
ρj


 . (3)

Proof. To prove this factorization we simply need to remember that the sequence
of non-zero roots rρnx, ordered by absolute value satis�es ¶ρn¶� 0 as n��.

Remark 6. This is a general property of analytic functions.

Hence, we can choose rznx � rρnx, m � g and the sequence rlnx obtained
with the lemma in Theorem 4. This yields exactly equation 3.
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