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It is evident that for any finite set {c,,} of points in the complex plane, we
can associate a polynomial p(z) = [],, (2 — ¢,) whose zeros are precisely those
points in the set. Conversely, as a consequence of the Fundamental Theorem of
Algebra, any polynomial function p(z) in the complex plane can be factored as
p(z) =a[],(z —¢,) where a is a non-zero constant and {c,} is the set of zeros

of p(z).

Weierstrass Factorization Theorem studies what happens when the set
is not finite. It provides representations of entire functions, as products involving
their zeros.

Remark 1. Inspiration for this lesson comes mainly from [1].
We start with some simpler cases:

Theorem 1. If an entire function f(z) has no zeros, then f(z) = 92 for
some entire function g(z).

Proof. Define the function h(z) as the logarithmic derivative of f(z):
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h(z) is entire, as f(z) has no zeros, therefore:
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Theorem 2. If an entire function f(z) has a finite number of zeros, say
21, Zm, With kj, j = 1,+-m the order of z;. Then f(z) is of the form:
k Ko
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where g(2) is an entire function.

Proof. Simply note that the function:

f(z)
F(z) =
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is an entire function with no zeros. Hence Theorem 1 implies F(z) = €’ ) and
the result follows. O

Remark 2. It is evident that Theorem 1 is a special case of Theorem 2.

Let’s tackle now the case of entire functions with an infinite number of zeros,
Say 21,22, Zn, """
To do this, we need to define and study Weierstrass’s elementary Functions:
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Eo(2)=(1=2), Efz)=(1-2)" 7" 1=1,2

Theorem 3. Each elementary function E;(z), 1 = 0,1,2,--+ is an entire func-
tion with a simple zero at z = 1. Also:
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1. Ej(z)= -2 T,

2. If E)(2) = Z;Zo a;z” is the power series expansion of E;(z) about z = 0,
then ag =1, a1 =ay =+ =0a;=0and a; <0 for j > 1.

3. If |z| < 1, then |E)(2) - 1] < |2|"*.

Proof. 1.
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2. The coefficients of the power series expansion of an analytic function f
about z = ¢ are:
f(c)

n! -’
Therefore ay = E(0) = 1. On the other hand, Ej(z) has a zero of mul-

tiplicity [ at 0, hence, since term-by-term differentiation is permissible, it
follows that:

ap =

El(0
a; = lj(! ) =0, for j=1,2,--,1

where El](z) is the j—th derivative of E;(z).
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For j > I, we can see that in the expansion of Ej(z) = —e*TTTTT the

coefficient of each 2’ is a nonpositive real number.



3. Using part 2. we know that:
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Notice now that By (1) =0=1+Y 2, a; = —Y 2, a; = 1. Hence, for
|z| = 1:
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O
Lemma 1. Let {z,} be a sequence of complex numbers such that: z, # 0,

n=1,2,- and |z,| = 00 asn — 00,

Then, there exists a sequence of nonnegative integers {l,,} such that the series
0o l;+1
2 i1

Proof. Fix I, =n—1 for n = 1,2,---. Since |z,| = 00 as n — 00, there exists
N large enough so that |z,| = 2r for n = N. For all these n and for |z| < r (i.e.

z € B(0,r)), we have:
n ro\n 1
< | — = —.
- (2r) A

This proves that we can use Weierstrass’s M-Test to conclude that the series
is uniformly convergent in B(0,7). O
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is uniformly convergent on every closed disk B(0,r), r < 0.
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We can finally state the main Theorem:

Theorem 4. Weierstrass’s Factorization Theorem
Let {2,} be a sequence of complex numbers such that z, # 0 forn = 1,2, --- and

|z,| = 00 as n — oo. Let m be a nonnegative integer. Furthermore, let {l,,} be
l;+1

— converges

a sequence of monnegative integers such that the series Z;’;l

zj
uniformly on compact subsets of the complex plane. (Notice that Lemma 1
implies that such {l,} can always be found). Then:
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is an entire function. This function has zeros at z = 0 of multiplicity m and at
each z;, j = 1,2, of multiplicity k;. Here k; is the number of times z; occurs
in the sequence {z,}.

Remark 3. This Theorem is often stated in a different manner, we discuss it
after the proof.



Proof. Write E; (zi) as:

B, (=) =1+(B. (=)-1)

then the product in 2 converges uniformly and absolutely provided that the
series Z;‘;l (Eln (zi) - 1) converges uniformly and absolutely on every disk of

finite radius.

Remark 4. This is a classic result in complex analysis, it can be found as
Theorem 42.6 of [1].

Let |z| < . Then, given that |z,| — oo, there exists N large enough so that
Zi < 1 for n = N. Therefore, using point 3. of Theorem 3, we have
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Since we can choose [,, as in lemma 1, it follows that the series ijl Zi

j

converges uniformly on the closed disk E(O, r), hence the series |Eln (i) - 1|

Zn

converges uniformly and absolutely on B(0,r).

In conclusion, since r > 0 is arbitrary, we have proved that the series Zjil (Eln (Zi

converges uniformly and absolutely on every disk of finite radius, therefore the
product in equation 2 converges and the limit function f(z) is entire and has
the prescribed zeros. O

Remark 5. Notice that the sequence of positive integers {l,,} is not necessarily
unique, hence, so is the representation 2.

Theorem 5. Let f(z) be an entire function with an infinite number of roots,
let {p,} be the non-zero roots of f(z) repeated with multiplicity. Let g be the
order of the zero at z = 0. Then there exists a sequence of integers {l,,} such
that:

=115 (5) ®

Proof. To prove this factorization we simply need to remember that the sequence
of non-zero roots {p, }, ordered by absolute value satisfies |p, | = 0 as n — oo.

Remark 6. This is a general property of analytic functions.

Hence, we can choose {z,} = {p,}, m = g and the sequence {l,,} obtained
with the lemma in Theorem 4. This yields exactly equation 3. O
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Thank you!

We hope this lesson has been beneficial in studying
this interesting topic.
For more lessons or demonstrations, visit our website.
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