

It is evident that for any finite set $\{c_n\}$ of points in the complex plane, we can associate a polynomial $p(z) = \prod_n (z - c_n)$ whose zeros are precisely those points in the set. Conversely, as a consequence of the Fundamental Theorem of Algebra, any polynomial function p(z) in the complex plane can be factored as $p(z) = a \prod_n (z - c_n)$ where a is a non-zero constant and $\{c_n\}$ is the set of zeros of p(z).

Weierstrass Factorization Theorem studies what happens when the set is not finite. It provides representations of entire functions, as products involving their zeros.

Remark 1. Inspiration for this lesson comes mainly from [1].

We start with some simpler cases:

Theorem 1. If an entire function f(z) has no zeros, then $f(z) = e^{g(z)}$ for some entire function g(z).

Proof. Define the function h(z) as the logarithmic derivative of f(z):

$$h(z) = \frac{f'(z)}{f(z)} = \frac{\mathrm{d}}{\mathrm{d}z} \log f(z)$$

h(z) is entire, as f(z) has no zeros, therefore:

$$\int_0^z h(s) ds = \log f(s) |_0^z = \log f(z) - \log f(0)$$

$$\downarrow$$

$$\log f(z) = \int_0^z h(s) ds + \log f(0)$$

$$\downarrow$$

$$f(z) = e^{\int_0^z h(s) ds + \log f(0)} = e^{g(z)}.$$

Theorem 2. If an entire function f(z) has a finite number of zeros, say z_1, \dots, z_m , with $k_j, j = 1, \dots m$ the order of z_j . Then f(z) is of the form:

$$f(z) = (z - z_1)^{k_1} \cdots (z - z_m)^{k_m} e^{g(z)}$$

where g(z) is an entire function.

Proof. Simply note that the function:

$$F(z) = \frac{f(z)}{(z - z_1)^{k_1} \cdots (z - z_m)^{k_m}}$$

is an entire function with no zeros. Hence Theorem 1 implies $F(z) = e^{g(z)}$ and the result follows.

Remark 2. It is evident that Theorem 1 is a special case of Theorem 2.

Let's tackle now the case of entire functions with an infinite number of zeros, say $z_1, z_2, \dots, z_n, \dots$.

To do this, we need to define and study **Weierstrass's elementary Functions**:

$$E_0(z) = (1-z), \quad E_l(z) = (1-z)e^{z+\frac{z^2}{2}+\dots+\frac{z^l}{l}}, \quad l = 1, 2, \dots$$

Theorem 3. Each elementary function $E_l(z)$, $l = 0, 1, 2, \dots$ is an entire function with a simple zero at z = 1. Also:

- 1. $E'_l(z) = -z^l e^{z + \frac{z^2}{2} + \dots + \frac{z^l}{l}}$.
- 2. If $E_l(z) = \sum_{j=0}^{\infty} a_j z^z$ is the power series expansion of $E_l(z)$ about z = 0, then $a_0 = 1$, $a_1 = a_2 = \cdots = a_l = 0$ and $a_j \le 0$ for j > l.
- 3. If $|z| \le 1$, then $|E_l(z) 1| \le |z|^{l+1}$.

Proof. 1.

$$\frac{\mathrm{d}}{\mathrm{d}z}E_{l}(z) = -e^{z+\frac{z^{2}}{2}+\dots+\frac{z^{l}}{l}} + e^{z+\frac{z^{2}}{2}+\dots+\frac{z^{l}}{l}}(1+z+z^{2}+\dots+z^{l-1})(1-z)$$
$$= -z^{l}e^{z+\frac{z^{2}}{2}+\dots+\frac{z^{l}}{l}}.$$
(1)

The coefficients of the power series expansion of an analytic function f about z = c are:

$$a_n = \frac{f(c)}{n!}.$$

Therefore $a_0 = E(0) = 1$. On the other hand, $E'_l(z)$ has a zero of multiplicity l at 0, hence, since term-by-term differentiation is permissible, it follows that:

$$a_j = \frac{E_l^j(0)}{j!} = 0,$$
 for $j = 1, 2, \dots, l$

where $E_l^j(z)$ is the *j*-th derivative of $E_l(z)$.

For j > l, we can see that in the expansion of $E'_l(z) = -z^l e^{z + \frac{z^2}{2} + \dots + \frac{z^l}{l}}$ the coefficient of each z^j is a nonpositive real number.

3. Using part 2. we know that:

$$|E_{l}(z)-1| = \left|\sum_{j=0}^{\infty} a_{j} z^{j} - 1\right| = \left|\sum_{j=l+1}^{\infty} a_{j}\right| \le \sum_{j=l+1}^{\infty} |a_{j}| |z|^{j} \le |z|^{l+1} \sum_{j=l+1}^{\infty} (-a_{j}) |z|^{j-l-1}$$

Notice now that $E_l(1) = 0 = 1 + \sum_{j=l+1}^{\infty} a_j \Rightarrow -\sum_{j=l+1}^{\infty} a_j = 1$. Hence, for $|z| \le 1$:

$$|E_{l}(z) - 1| \leq |z|^{l+1} \sum_{j=l+1}^{\infty} (-a_{j})|z|^{j-l-1} \leq |z|^{l+1} \sum_{j=l+1}^{\infty} (-a_{j}) = |z|^{l+1}.$$

Lemma 1. Let $\{z_n\}$ be a sequence of complex numbers such that: $z_n \neq 0$, $n = 1, 2, \dots$ and $|z_n| \rightarrow \infty$ as $n \rightarrow \infty$.

Then, there exists a sequence of nonnegative integers $\{l_n\}$ such that the series $\sum_{j=1}^{\infty} \left| \frac{z}{z_j} \right|^{l_j+1}$ is uniformly convergent on every closed disk $\overline{B}(0,r)$, $r < \infty$.

Proof. Fix $l_n = n - 1$ for $n = 1, 2, \dots$. Since $|z_n| \to \infty$ as $n \to \infty$, there exists N large enough so that $|z_n| \ge 2r$ for $n \ge N$. For all these n and for $|z| \le r$ (i.e. $z \in \overline{B}(0, r)$), we have:

$$\left|\frac{z}{z_n}\right|^{l_n+1} = \left|\frac{z}{z_n}\right|^n \le \left(\frac{r}{2r}\right)^n = \frac{1}{2^n}$$

This proves that we can use **Weierstrass's** *M*-**Test** to conclude that the series is uniformly convergent in $\overline{B}(0, r)$.

We can finally state the main Theorem:

Theorem 4. Weierstrass's Factorization Theorem

Let $\{z_n\}$ be a sequence of complex numbers such that $z_n \neq 0$ for $n = 1, 2, \cdots$ and $|z_n| \to \infty$ as $n \to \infty$. Let m be a nonnegative integer. Furthermore, let $\{l_n\}$ be a sequence of nonnegative integers such that the series $\sum_{j=1}^{\infty} \left| \frac{z}{z_j} \right|^{l_j+1}$ converges uniformly on compact subsets of the complex plane. (Notice that Lemma 1 implies that such $\{l_n\}$ can always be found). Then:

$$f(z) = z^m \prod_{j=1}^{\infty} E_{l_j}\left(\frac{z}{z_j}\right)$$
(2)

is an entire function. This function has zeros at z = 0 of multiplicity m and at each z_j , $j = 1, 2, \cdots$ of multiplicity k_j . Here k_j is the number of times z_j occurs in the sequence $\{z_n\}$.

Remark 3. This Theorem is often stated in a different manner, we discuss it after the proof.

Proof. Write $E_{l_n}\left(\frac{z}{z_n}\right)$ as:

$$E_{l_n}\left(\frac{z}{z_n}\right) = 1 + \left(E_{l_n}\left(\frac{z}{z_n}\right) - 1\right)$$

then the product in 2 converges uniformly and absolutely provided that the series $\sum_{j=1}^{\infty} \left(E_{l_n} \left(\frac{z}{z_n} \right) - 1 \right)$ converges uniformly and absolutely on every disk of finite radius.

Remark 4. This is a classic result in complex analysis, it can be found as Theorem 42.6 of [1].

Let $|z| \leq r$. Then, given that $|z_n| \to \infty$, there exists N large enough so that $\frac{z}{z_n} \leq 1$ for $n \geq N$. Therefore, using point 3. of Theorem 3, we have

$$\left| E_{l_n} \left(\frac{z}{z_n} \right) - 1 \right| \le \left| \frac{z}{z_n} \right|^{l_n + 1}.$$

Since we can choose l_n as in lemma 1, it follows that the series $\sum_{j=1}^{\infty} \left| \frac{z}{z_j} \right|^{l_n+1}$ converges uniformly on the closed disk $\overline{B}(0,r)$, hence the series $\left| E_{l_n} \left(\frac{z}{z_n} \right) - 1 \right|$ converges uniformly and absolutely on $\overline{B}(0,r)$.

In conclusion, since r > 0 is arbitrary, we have proved that the series $\sum_{j=1}^{\infty} \left(E_{l_n} \left(\frac{z}{z_n} \right) - 1 \right)$ converges uniformly and absolutely on every disk of finite radius, therefore the product in equation 2 converges and the limit function f(z) is entire and has the prescribed zeros.

Remark 5. Notice that the sequence of positive integers $\{l_n\}$ is not necessarily unique, hence, so is the representation 2.

Theorem 5. Let f(z) be an entire function with an infinite number of roots, let $\{\rho_n\}$ be the non-zero roots of f(z) repeated with multiplicity. Let g be the order of the zero at z = 0. Then there exists a sequence of integers $\{l_n\}$ such that:

$$f(z) = z^g \prod_{j=1}^{\infty} E_{l_j}\left(\frac{z}{\rho_j}\right).$$
(3)

Proof. To prove this factorization we simply need to remember that the sequence of non-zero roots $\{\rho_n\}$, ordered by absolute value satisfies $|\rho_n| \to 0$ as $n \to \infty$.

Remark 6. This is a general property of analytic functions.

Hence, we can choose $\{z_n\} = \{\rho_n\}$, m = g and the sequence $\{l_n\}$ obtained with the lemma in Theorem 4. This yields exactly equation 3.

Thank you!

We hope this lesson has been beneficial in studying this interesting topic. For more lessons or demonstrations, visit our website.

References

[1] Ravi P Agarwal, Kanishka Perera, and Sandra Pinelas. An introduction to complex analysis. Springer Science & Business Media, 2011.