

**Theorem 1.** The number of zeros of the Riemann Zeta Function  $\zeta(s)$  in the critical strip, that have 0 < Im(s) < T is:

$$N(T) = \frac{T}{2\pi} \log \left(\frac{T}{2\pi}\right) - \frac{T}{2\pi} + \mathcal{O}(\log(T)). \tag{1}$$

The proof that follows is a more detailed version of the one presented by W.Dittrichin in [1].

*Proof.* Assume that  $T \ge 3$  and  $\zeta(s) \ne 0$  for Im(s) = T.

Consider the rectangle  $R_T$ :



Figure 1: The rectangle  $R_T$ 

We are going to proceed by using the argument principle on the entire function  $\xi(s)$ , remember that the Riemann  $\xi$  function is defined as:

$$\xi(s) := \frac{s}{2}(s-1)\pi^{-\frac{s}{2}}\Gamma\left(\frac{s}{2}\right)\zeta(s) \tag{2}$$

The reason we use this function is that its zeros are identical to the ones of the  $\zeta$  function in the critical range.

**Remark 1.** If the last statement isn't clear, we encourage you to explore our lesson on Riemann's original article for a deeper understanding.

Therefore:

$$\frac{1}{2\pi i} \int_{\partial R_T} \frac{\xi'(s)}{\xi(s)} ds = Z$$

where Z is the number of zeros of  $\xi(s)$  inside the contour  $\partial R_T$  and therefore the number of zeros of  $\xi(s)$  in the critical strip.

Notice that  $\xi(s)$  has real values for all  $s \in \mathbb{R}$  and therefore satisfies

$$\xi(\overline{s}) = \xi(s)$$

this implies that:

$$\xi(s) = 0 \iff \xi(\overline{s}) = 0.$$

By definition, N(T) is only the number of zeros in the portion of the critical strip above the real line, hence we can write:

$$Z = 2N(T) = \frac{1}{2\pi i} \int_{\partial R_T} \frac{\xi'(s)}{\xi(s)} ds.$$

The functional equation  $\xi(s) = \xi(1-s)$  implies that

$$-\frac{\xi'(1-s)}{\xi(1-s)} = \frac{\xi'(s)}{\xi(s)}$$

so, calling  $C_T'$  the left side of  $\partial R_T$  and  $C_T$  the right side (see Figure 2), we have:

$$\int_{C_T^l} \frac{\xi'(s)}{\xi(s)} ds = \int_{C_T} -\frac{\xi'(1-s)}{\xi(1-s)} ds = \int_{C_T} \frac{\xi'(s)}{\xi(s)} ds$$

$$\downarrow \qquad \qquad \downarrow$$

$$2N(T) = \frac{1}{2\pi i} \int_{\partial R_T} \frac{\xi'(s)}{\xi(s)} ds = \frac{1}{2\pi i} \int_{C_T'} \frac{\xi'(s)}{\xi(s)} ds + \frac{1}{2\pi i} \int_{C_T} \frac{\xi'(s)}{\xi(s)} ds = 2 \left[ \frac{1}{2\pi i} \int_{C_T} \frac{\xi'(s)}{\xi(s)} ds \right].$$

Therefore, what we need to evaluate is:

$$N(T) = \frac{1}{2\pi i} \int_{C_T} \frac{\xi'(s)}{\xi(s)} ds. \tag{3}$$

Compute the logarithm of  $\xi(s)$  using its definition (2):

$$\log(\xi(s)) = -\log(2) + \log(s) + \log(s-1) - \frac{s}{2}\log(\pi) + \log\Gamma\left(\frac{s}{2}\right) + \log\zeta(s)$$

differentiating both sides:

$$\frac{d}{ds}\log(\xi(s)) = \frac{\xi'(s)}{\xi(s)} = \frac{1}{s} + \frac{1}{s-1} - \frac{1}{2}\log(\pi) + \frac{1}{2}\frac{\Gamma'\left(\frac{s}{2}\right)}{\Gamma\left(\frac{s}{2}\right)} + \frac{\zeta'(s)}{\zeta(s)}.$$



Figure 2: The rectangle  $R_T$  divided in  $C_T$  and  $C_T'$ 

Let's substitute this values in equation 3:

$$2\pi i N(T) = \int_{C_T} \left(\frac{1}{s} + \frac{1}{s-1}\right) ds - \frac{1}{2} \int_{C_T} \log(\pi) ds + \frac{1}{2} \int_{C_T} \frac{\Gamma'\left(\frac{s}{2}\right)}{\Gamma\left(\frac{s}{2}\right)} ds + \int_{C_T} \frac{\zeta'(s)}{\zeta(s)} ds. \tag{4}$$

Calculating the integrals separately we have:

$$\int_{C_T} \left(\frac{1}{s} + \frac{1}{s-1}\right) ds = \frac{1}{2} \int_{\partial R_T} \left(\frac{1}{s} + \frac{1}{s-1}\right) ds = \frac{1}{2} 2\pi i (1+1) = 2\pi i$$

where we used the Residue Theorem and the fact that s=0 and s=1 are two simple poles.

$$\frac{1}{2} \int_{C_T} \log(\pi) ds = \frac{1}{2} \log(\pi) \int_{C_T} ds = \frac{1}{2} \log(\pi) \left( (2 + iT) - (2 - iT) \right) = iT \log(\pi).$$

While

$$\frac{1}{2} \int_{C_T} \frac{\Gamma'\left(\frac{s}{2}\right)}{\Gamma\left(\frac{s}{2}\right)} ds = \frac{1}{2} \int_{C_T} \frac{d}{ds} \left[\log \Gamma\left(\frac{s}{2}\right)\right] = \left|\log \Gamma\left(\frac{s}{2}\right)\right|^{\frac{1}{2} + iT} \\
= \log \Gamma\left(\frac{1}{4} + i\frac{T}{2}\right) - \log \Gamma\left(\frac{1}{4} - i\frac{T}{2}\right) = \log \Gamma\left(\frac{1}{4} + i\frac{T}{2}\right) - \log \Gamma\left(\frac{1}{4} + i\frac{T}{2}\right) \\
= 2iIm \left(\log \Gamma\left(\frac{1}{4} + i\frac{T}{2}\right)\right) \tag{5}$$

where we used the fact that  $\Gamma(\overline{s}) = \overline{(\Gamma(s))} \Rightarrow \log \Gamma(\overline{s}) = \overline{\log \Gamma(s)}$ .

Consider the expansion for  $\log \Gamma(s)$  known as **Stirling's Series**:

$$\log \Gamma(s) = \left(s - \frac{1}{2}\right) \log(s) - s + \log(\sqrt{2\pi}) + \mathcal{O}\left(\frac{1}{s}\right)$$

to obtain:

$$= 2iIm \left( \left( \frac{1}{4} + i\frac{T}{2} - \frac{1}{2} \right) \log \left( \frac{1}{4} + i\frac{T}{2} \right) - \left( \frac{1}{4} + i\frac{T}{2} \right) + \log(\sqrt{2\pi}) + \mathcal{O}\left( \frac{1}{T} \right) \right)$$

$$= 2iIm \left( \left( -\frac{1}{4} + i\frac{T}{2} \right) \log \left( i\frac{T}{2} \right) - i\frac{T}{2} + \log(\sqrt{2\pi}) + \mathcal{O}\left( \frac{1}{T} \right) \right)$$

$$= 2iIm \left( \left( -\frac{1}{4} + i\frac{T}{2} \right) \left[ \log \left( \frac{T}{2} \right) + \log(i) \right] - i\frac{T}{2} + \log(\sqrt{2\pi}) + \mathcal{O}\left( \frac{1}{T} \right) \right)$$

$$= 2iIm \left( \left( -\frac{1}{4} + i\frac{T}{2} \right) \left[ \log \left( \frac{T}{2} \right) + i\frac{\pi}{2} \right] - i\frac{T}{2} + \log(\sqrt{2\pi}) + \mathcal{O}\left( \frac{1}{T} \right) \right)$$

$$= 2iIm \left( -\frac{1}{4} \log \left( \frac{T}{2} \right) - i\frac{\pi}{8} + i\frac{T}{2} \log \left( \frac{T}{2} \right) - \frac{\pi T}{4} - i\frac{T}{2} + \log(\sqrt{2\pi}) + \mathcal{O}\left( \frac{1}{T} \right) \right)$$

$$= 2i \left( -\frac{\pi}{8} + \frac{T}{2} \log \left( \frac{T}{2} \right) - \frac{T}{2} + \mathcal{O}\left( \frac{1}{T} \right) \right)$$

$$= 2\pi i \left( \frac{T}{2\pi} \log \left( \frac{T}{2} \right) - \frac{T}{2\pi} - \frac{1}{8} + \mathcal{O}\left( \frac{1}{T} \right) \right)$$

$$(6)$$

we have arrived to an intermediate result:

$$2\pi i N(T) = 2\pi i - iT \log(\pi) + 2\pi i \left(\frac{T}{2\pi} \log\left(\frac{T}{2}\right) - \frac{T}{2\pi} - \frac{1}{8} + \mathcal{O}\left(\frac{1}{T}\right)\right) + \int_{C_T} \frac{\zeta'(s)}{\zeta(s)} ds$$

⇓

$$N(T) = 1 - \frac{T}{2\pi} \log(\pi) + \frac{T}{2\pi} \log\left(\frac{T}{2}\right) - \frac{T}{2\pi} - \frac{1}{8} + \mathcal{O}\left(\frac{1}{T}\right) + \frac{1}{2\pi i} \int_{C_T} \frac{\zeta'(s)}{\zeta(s)} ds.$$
 (7)

Split the last term in two parts:

First:

$$\int_{2-iT}^{2+iT} \frac{\zeta'(s)}{\zeta(s)} ds = \int_{2-iT}^{2+iT} \frac{d}{ds} \log \zeta(s) ds = |\log \zeta(s)|_{2-iT}^{2+iT}.$$

Remember that the Riemann Zeta Function can be written as an Euler Product when Re(s) > 1:

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = \prod_{p} \frac{1}{1 - \frac{1}{p^s}}$$
 (8)

∜

$$\log(\zeta(s)) = \log\left(\prod_{p} (1 - p^{-s})^{-1}\right) = \sum_{p} \log\left((1 - p^{-s})^{-1}\right) = -\sum_{p} \log\left((1 - p^{-s})\right).$$
(9)

Using 9 and the fact that  $\ln\left(\frac{1}{1-x}\right) = \sum_{n=1}^{\infty} \frac{x^n}{n}$  we have:

$$\left|\log(\zeta(2+iT))\right| = \left|\sum_{p}\log\left(\frac{1}{1-p^{-2-iT}}\right)\right| \le \left|\sum_{p}\sum_{n=1}^{\infty}\frac{(p^{-2-iT})^n}{n}\right|$$

$$\leq \sum_{p} \sum_{n=1}^{\infty} \frac{(p^{-2})^n}{n} = \sum_{p} \log \left( \frac{1}{1 - p^{-2}} \right) = \log(\zeta(2)) = \log \left( \frac{\pi^2}{6} \right).$$

Likewise:

$$|\log(\zeta(2-iT))| \leq \log\left(\frac{\pi^2}{6}\right).$$

Therefore:

$$\int_{2-iT}^{2+iT} \frac{\zeta'(s)}{\zeta(s)} ds = \mathcal{O}(1), \qquad \text{For } T \ge 3$$

For the second part, using this time the fact that  $\zeta(\overline{s}) = \overline{\zeta(s)}$  we have:

$$\int_{\frac{1}{2}-iT}^{2-iT} \frac{\zeta'(s)}{\zeta(s)} ds = \int_{\frac{1}{2}}^{2} \frac{\zeta'(\sigma-iT)}{\zeta(\sigma-iT)} d\sigma = \overline{\int_{\frac{1}{2}}^{2} \frac{\zeta'(\sigma+iT)}{\zeta(\sigma+iT)} d\sigma} = \overline{\int_{\frac{1}{2}+iT}^{2+iT} \frac{\zeta'(s)}{\zeta(s)} ds}$$

so that

$$\frac{1}{2\pi i} \left( \int_{\frac{1}{2} - iT}^{2 - it} \frac{\zeta'(s)}{\zeta(s)} ds + \int_{2 + it}^{\frac{1}{2} + iT} \frac{\zeta'(s)}{\zeta(s)} ds \right) = \frac{1}{2\pi i} \left( \overline{\int_{\frac{1}{2} + iT}^{2 + iT} \frac{\zeta'(s)}{\zeta(s)} ds} - \int_{\frac{1}{2} + iT}^{2 + it} \frac{\zeta'(s)}{\zeta(s)} ds \right)$$

$$= -\frac{1}{\pi} Im \left( \int_{\frac{1}{2} + iT}^{2 + it} \frac{\zeta'(s)}{\zeta(s)} ds \right) \tag{10}$$

now

$$-\int_{\frac{1}{n}+iT}^{2+it} \frac{\zeta'(s)}{\zeta(s)} ds = \log\left(\zeta\left(\frac{1}{2}+iT\right)\right) - \log(\zeta(2+iT))$$

so, remembering that  $Im(\log(s)) = arg(s)$  we have:

$$-Im\left(\int_{\frac{1}{2}+iT}^{2+it} \frac{\zeta'(s)}{\zeta(s)} ds\right) = \arg\left(\zeta\left(\frac{1}{2}+iT\right)\right) - \arg(\zeta(2+iT)).$$

The function  $\frac{1}{\pi} \arg \left( \zeta \left( \frac{1}{2} + iT \right) \right)$  is sometimes referred to as S(t) and is  $\mathcal{O}(\log(T))$ , that is also true for  $\arg(\zeta(2+iT))$ , proof of both can be found in [2] (both are consequences of Lemma 9.4 but only the first is made explicit it Theorem 9.4).

Hence our final result for the value N(T) is:

$$N(T) = \frac{T}{2\pi} \log \left(\frac{T}{2\pi}\right) - \frac{T}{2\pi} + \mathcal{O}(\log(T)). \tag{11}$$



## Thank you!

We hope this lesson has been beneficial in studying this interesting topic.

For more lessons or demonstrations, visit our website.

## References

- [1] Walter Dittrich. "On Riemann's Paper," On the Number of Primes Less Than a Given Magnitude"". In: arXiv preprint arXiv:1609.02301 (2016).
- [2] Edward Charles Titchmarsh and David Rodney Heath-Brown. *The theory of the Riemann zeta-function*. Oxford university press, 1986.