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Theorem 1. The number of zeros of the Riemann Zeta Function ((s) in the
critical strip, that have 0 < Im(s) < T is:
T T T
N(T) = 5 log(%) —5- O(log(T)). (1)

The proof that follows is a more detailed version of the one presented by
W.Dittrichin in [1].

Proof. Assume that T = 3 and ((s) # 0 for Im(s) = T.

Consider the rectangle Rr:
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Figure 1: The rectangle Ry

We are going to proceed by using the argument principle on the entire func-
tion £(s), remember that the Riemann ¢ function is defined as:

£(s) = 5(s = ) 20 (5) () (2)



The reason we use this function is that its zeros are identical to the ones of the
¢ function in the critical range.

Remark 1. If the last statement isn’t clear, we encourage you to explore our
lesson on Riemann’s original article for a deeper understanding.

Therefore: ,
1 £(s)
21t Jory &(5)

where Z is the number of zeros of £(s) inside the contour OR; and therefore
the number of zeros of £(s) in the critical strip.

ds =7

Notice that £(s) has real values for all s € R and therefore satisfies

this implies that:
£(s)=0 = &(5)=0.
By definition, N(T') is only the number of zeros in the portion of the critical

strip above the real line, hence we can write:

The functional equation £(s) = £(1 — s) implies that

ds.

_E-s) _€(s)
§(1=s)  &(s)
so, calling C7 the left side of Ry and C the right side (see Figure 2), we have:
£(s) €(1-5) £(s)
ds= | ->-"gs= d
e 6) LT -9 Je, €)™
!

L G oG, ), o L),
PN = 505 gy €)™ = 21 S, &) P H 2w ), E9) 2[2m’ .. s(s)d}

Therefore, what we need to evaluate is:

1 ¢(s)
NI =55 )., )

Compute the logarithm of £(s) using its definition (2):

ds. (3)

S S
log(£(s)) = —log(2) + log(s) + log(s — 1) = 5 log(r) +log ' (5 ) + log ((s)
differentiating both sides:
1 '

osle(s)) = £ = 5+ g - 1ot +
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https://positiveincrement.com/lesson-on-the-number-of-primes-less-than-a-given-quantity
https://positiveincrement.com/xi-reflection-formula
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Figure 2: The rectangle Ry divided in Cy and Cf
Let’s substitute this values in equation 3:
s
11 1 1 (3 '
2miN(T) = J (— + —)ds—— I log(m)ds+ 5 I L2)ds+J C(S)ds.
or\5 s—1 2 Je, 2 CTF(g) cr ()

Calculating the integrals separately we have:

1 1 1 1 1 1 .
JCT (E + S—_l)ds = 5 JaRT (g + STl)dS = 527’(”6(1 + ].) = 2m

where we used the Residue Theorem and the fact that s = 0 and s = 1 are two
simple poles.

. LT log(r)ds = 3 log() LT ds = 3 log(r) (2 +iT) - (2 = iT)) = iTlog(r).

While

(s Ly
S ()] psr ()

—lI‘l'TIFl'T—lFl'Tlfl'T (5)
= log Z+Z§ — log Z_ZE = log Z+Z§ — log Z+Z§
. 1 T
=22]m(logf(z+z§))
where we used the fact that T'(3) = (I'(s)) = logI'(3) = log I'(s).

Consider the expansion for log I'(s) known as Stirling’s Series:

log (s) = (- 3 | s(s) = s + log(v2m) + 0



to obtain:

- 2ilm((% tig Q)IOg(% HE) (4 Hg) * log(2n) +O(T))

- 2“’”((—;1 +§)1g(§) — i + log(v2r) +0(%))
e )
_2zIm(( 4+22)[log(2)+z2} i3 +log(\/ﬂ)+O(T))
bl )
SER RN

we have arrived to an intermediate result:

20iN(T) = 2mi—iT log(r)+2mi (% log(g) - % - % +0 (%))+LT E((j)) ds

U

N(T) = 1—%log(ﬂ')+%log(§)—%—%+O(%)+% LT CC'((S))ds. ™)

Split the last term in two parts:

First:

244T A 24T "
[ [ towc(shs = Hog ()3,

o—ir C(s) 2-iT

Remember that the Riemann Zeta Function can be written as an Euler
Product when Re(s) > 1:

(=Y ae=T1=t (®)

R —]

log(¢(s)) = 10%(1_[(1 —p““fl) = Y10 ((1-p™)7") == Y log ((1-57)).

p

Using 9 and the fact that In (ﬁ) = Zoo % we have:

n=1

Zlog(%) <
P 1-p

|log(¢(2 +iT))| =



https://positiveincrement.com/eulers-product-formula
https://positiveincrement.com/eulers-product-formula

sZi Zlog(l_ ) log(<(2))=10g(

2
T
)

n=1
Likewise: )
llog(¢(2 = iT))| < 1og(%)
Therefore:
244iT
J C(s)ds=(’)(1), For T = 3.
2—ir C(s)

For the second part, using this time the fact that ((3) = ((s) we have:

2—iT<- s C C O'+ZT _ 2+1T C,(S)
L-iT(S L U—ZT 1 ((o+4T) _I1+iT C(S)ds

so that:
1 2-it C'(S) LT C'(S) B 1 2+iT ¢'(s) 2+it C'(S)
o (IT 0 o ds) " mi UT % L ds)

__l . 2+it Q,(S) )
=wl (LH’T C(S)d)

(10)

now

gl )

so, remembering that I'm(log(s)) = arg(s) we have:

_Im U?; g((j)) ds) - arg(C (% . zT)) — arg(C(2 + iT)).

The function % arg (C (% + ZT)) is sometimes referred to as S(t) and is O(log(T')),
that is also true for arg(¢(2 + ¢1')), proof of both can be found in [2]| (both are
consequences of Lemma 9.4 but only the first is made explicit it Theorem 9.4).

Hence our final result for the value N(T') is:

N(T) = 5 log(%) - o+ O(log(T)). (11)
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Thank you!

We hope this lesson has heen beneficial in studying
this interesting topic.
For more lessons or demonstrations, visit our website.
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