
In his now legendary paper "On the Number of Primes Less Than a Given
Quantity", Riemann stated his famous hypothesis.

While today we know that the Zeta Function is valuable in a wide range of
mathematical topics, its �rst de�nition was strictly related to the behavior of
prime numbers.

In particular, Riemann de�ned an unusual Prime Counting Function and
proved an integral equation that contains his Zeta Function.

Remark 1. This lesson explains in detail part of Riemann's Original Paper [2].

He started by remembering Euler's Product Formula for the Zeta Function:

ζ�s� �5
p

1

1 � p�s
. (1)

He then de�ned his Prime Counting Function F �x� as:
F �x� � wthe number of primes less than x when x is not a prime

(the number of primes less than x) � 1
2

when x is a prime
(2)

Remark 2. Over the years, the Function F �x� originally de�ned by Riemann
has undergone changes in notation and de�nition; many textbooks prefer not to
adhere to the original. Instead, we aim to be as faithful as possible to Riemann's
paper.

This de�nition implies that, for any k at which there is a jump in the value
of F �x� we have:

F �k� � limx�0� F �k � x� � limx�0� F �k � x�
2

.
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Figure 1: The Riemann Prime Counting Function

By using the Euler Product 1 and and the Taylor expansion for log�1 � x�
we obtain the identity:
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while, using the fact that Re�s� % 1, we have:
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Hence, equation 3 can be written as:
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Looking at the graph of F �x� (see image 1), one sees that:
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where pk is the k�th prime number. Notice that:
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which is exactly the �rst term of equation 4.

One can see with the same computations that:
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which is the second term of equation 4.

Similar equations can be found for 1
3
F �x 1
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Therefore calling

f�x� �� F �x� � 1
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Riemann obtains the equation:
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This equation is valid for each complex value s � a � ib for which a % 1.

Remark 3. In his original article, Riemann never writes this integral from 0
to �, but this last equivalence is obvious due to the de�nition of f and will be
useful for the next computation.
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After obtaining equation 8 Riemann notices that, if, for s � a� ib, a % 1 and
h�x� a real function, a function g�s� satis�es

g�s� � E �

0
h�x�x�sd log x

Remark 4. This is an example of a Riemann-Stieltjes integral, for details about
this theory we recommend the book "The Stieltjes integral" by G.Convertito and
D. Cruz-Uribe [1].
To those only familiar with Measure theory, we can say roughly speaking that
this is essentially using log x as a measure.

Then the function g�s� can be decomposed as:
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(9)

That is to say:
g�a � ib� � g1�b� � ig2�b�

where
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Proceed by multiplying both equations by:
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A known property of the Riemann-Stieltjes integral is that, for f�x� bounded
on the integration interval, g�x� monotonically increasing and g

¬�x� Riemann
integrable, we have:
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now changing variable to t � log x� x � e
t
:
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where we used Fourier's inversion theorem in the last passage.

We have therefore proven that:
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If we multiply both sides by iy
a
we obtain:
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The functions f�x� and log�s� satisfy the same properties required for h�x�
and g�s� respectively. Therefore, applying this result we conclude:
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ds. (11)
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