
The primary focus of this lesson is the Möbius function µ�n�. Although it
�rst appeared implicitly in some of Euler's works, it was systematically de�ned
and studied by August Ferdinand Möbius in 1832 [6]. For a deeper exploration
of the history and signi�cance of this function, we suggest referring to [4].

Rather than reviewing the original article, we will de�ne the function and
prove its main properties. This will allow us to explain its connection to the
Riemann Zeta function and the Riemann Hypothesis.

1 Basic properties

De�nition 1. The Möbius function is de�ned as:

µ�n� �
~����������
1 if n � 1��1�k if n is the product of k distinct primes

0 if n is divisible by a square % 1

(1)

note that either n contains at least one squared prime in its factorization or it
contains all distinct primes, hence the function is de�ned for all n " N'1.

Remark 1.1. The Möbius function belongs to a particular category called "arith-
metical functions". These are a central topic in Analytic Number Theory; a
complete introduction to the subject can be found in Apostol's book [1].

Theorem 1. We have:

=
d¶n

µ�d� � w1 if n � 1

0 if n % 1
(2)

Proof. The formula is obviously true for n � 1, assume n % 1 and therefore
n � p

a1

1 p
a2

2 �p
ak

k . By de�nition of µ�n�, in the sum <d¶n µ�d� the only nonzero
terms arise when d � 1 and when d is a product of distinct primes, therefore:

=
d¶n

µ�d� � µ�1��µ�p1����µ�pk��µ�p1p2����µ�pk�1pk����µ�p1p2�pk�.
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The �rst terms after µ�1� are all the possible combinations of k factors taken
one at the time, the second terms are all the possible combinations of k factors
taken two at the time and so on, in other words:

=
d¶n

µ�d� � 1 � �k1���1� � �k2���1�2 ��� �kk���1�k.
Therefore, remembering that

k

=
m�0

� km�ak�mb
m
� �a � b�k

we have:

=
d¶n

µ�d� � k

=
m�0

� km���1�m �

k

=
m�0

� km�1k�m��1�m � �1 � 1�k � 0.

Theorem 2. The Möbius function is multiplicative, that is to say:

µ�ab� � µ�a�µ�b�
whenever a, b " N are coprime.

Proof. Consider two coprime numbers a, b " N, without loss of generality, sup-
pose a ' b.

We proceed by induction on ab:
If ab � 1, then µ�ab� � 1 � µ�a�µ�b� (as a � b � 1).

Otherwise, ab % 1 and Theorem 1 implies:

0 � =
d¶ab

µ�d� � µ�ab� � =
d¶ab;d$ab

µ�d�.
When d $ ab the inductive hypothesis assures that the Theorem is valid.

Hence:

0 � µ�ab� � =
d¶ab;d$ab

µ�d� � µ�ab� � =
d¶a;d¬¶b

µ�d�µ�d¬� � µ�a�µ�b�
� µ�ab� � µ�a�µ�b� �=

d¶a
µ�d�=

d¶b
µ�d¬� � µ�ab� � µ�a�µ�b� � 0.

In conclusion:
µ�ab� � µ�a�µ�b�.
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2 Relation to ζ�s�

This section is a simpli�ed version of the ones contained in [3] and [7] regarding
this topic, we chose not to prolong the text with unneeded results. For a broader
picture, both the cited sources are valid.

Remark 2.1. We will use the classic notation s � σ� it with σ, t " R, therefore
σ � Re�s�, t � Im�s�.
Theorem 3. If s is a complex number with σ % 1, we have:

�

=
n�1

µ�s�
ns �

1

ζ�s� (3)

Proof. This proof requires the use of the Euler product for the Riemann zeta
function, that is:

ζ�s� �5
p

1

1 � p�s
(4)

where the product runs over all prime numbers p and σ % 1. The proof of this
classical result can be found on our site.

Equation 4 implies that:

1

ζ�s� �5
p

�1 � p
�s� �5

p

�1 � 1

ps

 � �1 � 1

2s

 �1 � 1

3s

 �1 � 1

5s

�

Let's compute this product step by step:

Firstly, in�nite times the product of 1 gives us 1:

�1 � 1

2s

 �1 � 1

3s

 �1 � 1

5s

� � 1 ��

then we have the product of 1 times a negative fraction of a prime times in�nite
times 1, which leaves us only with the fraction; this happens for every prime
(included 2) and therefore we have:

�1 � 1

2s

 �1 � 1

3s

 �1 � 1

5s

� � 1 �=

p

�1

ps
��.

We then �nd the same product, except this time with two negative fraction of
primes; once again this happens for every prime, hence:

�1 � 1

2s

 �1 � 1

3s

 �1 � 1

5s

� � 1 �=

p

�1

ps
� =

n�p1p2

�1

ps1

�1

ps2
��.

Iterating this process we have:

5
p

�1 � 1

ps

 � 1 �=

p

�1

ps
� =

n�p1p2

�1

ps1

�1

ps2
� =

n�p1p2p3

�1

ps1

�1

ps2

�1

ps3
��
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but �1
ps
1

�1
ps
2
�

1
ns and �1

ps
1

�1
ps
2

�1
ps
3
�

�1
ns therefore:

5
p

�1 � 1

ps

 � 1 �=

n�p

�1

ns � =
n�p1p2

1

ns � =
n�p1p2p3

�1

ns �� (5)

which is exactly

5
p

�1 � 1

ps

 � �

=
n�1

µ�s�
ns . (6)

Notice that when n is divisible by a squared prime, it doesn't appear in 5, indeed
in the series 6 those numbers have coe�cient 0.

De�nition 2. If x ' 1 we de�ne the Mertens' Function as:

M�x� � =
n&x

µ�n�. (7)

It's a known fact that:

1

ζ�s� � E
�

0
x
�s
dM�x� For σ % 1. (8)

This is an example of a Riemann-Stieltjes integral, for details about this
theory we recommend the book "The Stieltjes integral" by G.Convertito and D.
Cruz-Uribe [2].
Knowing the basis of this theory, equation 8 should be clear.
To those only familiar with Measure theory, we can say roughly speaking that
this is essentially using M�x� as the measure. Looking at the de�nition of this
function and Theorem 3, this equation should come to no surprise.

The Riemann-Stieltjes integral allows for integration by parts, so we can
write equation 8 as:

1

ζ�s� � E
�

0
x
�s
dM�x� � x

�s
M�x�¶�0 � E �

0
M�x���sx�s�1�dx

� lim
x��

�x�sM�x�� � sE �

0
M�x�x�s�1dx � sE �

0
M�x�x�s�1dx (9)

We have therefore proven a crucial formula to understand the connection
between the Mertens function and the Riemann Hypothesis:

1

ζ�s� � sE �

0
M�x�x�s�1dx. (10)

Convergence here is assured by the obvious equality ¶M�x�¶ & x, it implies
that ·x�sM�x�· & »»»»»x�s�1»»»»»� 0 as x�� and D�

0
M�x�x�s�1dx converges, both

provided that σ % 1.

Notice that if M�x� grows less rapidly than x
a for some a % 0, then this

integral converges for all s in the half-plane Re�a � s� $ 0 ¿ Re�s� % a,
therefore by analytic continuation the function 1

ζ�s� is analytic in this half plane.
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This argument brings us to two important conclusion:

Firstly, we de�nitely know that 1
ζ�s� has poles on the line σ � 1

2
and therefore

this formula cannot give us an analytic continuation there, i.e.

M�x� cannot grow less rapidly than x
a
for any a $ 1

2
.

On the other hand if we were to prove that M�x� grows less rapidly then

x
1
2
�ϵ for all ϵ % 0, then the function 1

ζ�s� would be con�rmed analytic for σ % 1
2
,

that is to say :

M�x� � O �x 1
2
�ϵ	 for all ϵ % 0 implies the Riemann Hypothesis.

It was actually proven by J.E. Littlewood in [5] that this condition is also
necessary to the Riemann Hypothesis, in other words:

Theorem 4. The Riemann Hypothesis is equivalent to the statement that for

every ϵ % 0 the function M�x�x� 1
2
�ϵ

approaches zero as x� 0.

This result is very important, we shall give a rigorous proof.

Remark 2.2. In his article [5], Littlewood omits many needed points of this
proof, we prefer to add some detail to the one contained in [7].

To prove Theorem 4 we will �rst need the following lemma:

Lemma 2.1. If the Riemann Hypothesis is true then

�

=
n�1

µ�s�
ns (11)

is convergent and its sum is 1
ζ�s� for every s with σ % 1

2
.

Remark 2.3. Notice the di�erence with Theorem 3, this time we have σ % 1
2
.

Proof. Begin by showing that:

If is x half an odd integer and σ % �1 then:

=
n$x

µ�n�
ns �

1

2πi
E 2�iT

2�iT

1

ζ�s � w� x
w

w dw �O �x2

T
� . (12)

Remark 2.4. The truth of the Riemann Hypothesis is not necessary for this
equation, it will be required later in the demonstration.

Fix n $ x and consider the integral:

1

2πi
E
R�

�xn	w dw
w �

1

2πi
�E 2�iT

���iT
�xn	w dw

w � E 2�iT

2�iT
�xn	w dw

w � E ���iT

2�iT
�xn	w dw

w �
where the contour R� is the rectangle in the picture below.
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Figure 1: The Rectangle R
�

The only singularity of the function in the rectangle is the one in w � 0 where:

Res0 ��xn	w 1
w
 � lim

w�0
w �xn	w 1

w � lim
w�0

�xn	w � 1

therefore, the Residue Theorem implies:

1

2πi
�E 2�iT

���iT
�xn	w dw

w � E 2�iT

2�iT
�xn	w dw

w � E ���iT

2�iT
�xn	w dw

w � � 1. (13)

Now, integrating by parts, with f
¬�w� � � x

n
�w � f�w� � � x

n
�w

log x
n

and

g�w� � 1
w
� g

¬�w� � � 1
w2 , we have:

E 2�iT

���iT
�xn	w dw

w �

Ẑ̂̂̂
^̂̂\

� x
n
�w

w log x
n

[_______]
2�iT

���iT

�

1

log x
n

E 2�iT

���iT
�xn	w dw

w2

� O
����

� x
n
�2

T log x
n


��� �O
����
� x
n
�2

log x
n

E ��

��

du

u2
� T 2


���
� O

����
� x
n
�2

T log x
n


��� .

(14)

Using the same argument, we obtain the same result for the integral on the line���� iT, 2 � iT �.
Hence, moving these elements to the right side of equation 13:

1

2πi
E 2�iT

2�iT
�xn	w dw

w � 1 �O
����

� x
n
�2

T log x
n


��� .
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Multiplying by µ�n�n�s and summing over all n $ x we obtain:

1

2πi
E 2�iT

2�iT
=
n$x

µ�n�
ns �xn	w dw

w � =
n$x

µ�n�
ns �=

n$x

µ�n�
ns O

����
� x
n
�2

T log x
n


���
�

1

2πi
E 2�iT

2�iT

1

ζ�s � w� x
w

w dw � =
n$x

µ�n�
ns �O

���
x
2

T

�

=
n�1

¶µ�n�¶
nσ�2 »»»»»log x

n

»»»»»

�� (15)

Where we used the fact that <n$x
µ�n�
ns�w �

1
ζ�s�w� � O�1�, due to Theorem 3;

(we are allowed to use it here since Re�s � w� � σ � 2 % 1).

Now notice that log x
n
j 0 because x is half an odd integer, therefore:

»»»»»»log x
n
»»»»»» '

»»»»»»»»log
x�x�

»»»»»»»» % 0.

Hence:
�

=
n�1

¶µ�n�¶
nσ�2 »»»»»log x

n

»»»»»
&

1»»»»»»log x
�x�

»»»»»»
�

=
n�1

1

nσ�2
� Kζ�σ � 2� (16)

so that:

O
���
x
2

T

�

=
n�1

¶an¶
nσ�2 »»»»»log x

n

»»»»»

�� � O �x2

T
�

which proves equation 12.

Remark 2.5. To complete this demonstration we will use the fact that:

Theorem 5. Assuming true the Riemann Hypothesis we have

ζ�s� � O�tϵ� (17)

and
1

ζ�s� � O�tϵ� (18)

for every σ % 1
2
, ϵ close to zero. (Remember that t � Im�s�).

This properties are nontrivial, we added an appendix to this text on our site
where you can �nd a rigorous proof.

To complete the demonstration of this Lemma, assume now that the Rie-
mann Hypothesis is true:

For 0 $ δ $ σ � 1
2
, consider the rectangle R shown in the picture below.
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Figure 2: The Rectangle R

We have:

1

2πi
E 2�iT

2�iT

1

ζ�s � w� x
w

w dw �
1

2πi
E
R

1

ζ�s � w� x
w

w dw �
1

2πi
E

1
2
�σ�δ�iT

2�iT

1

ζ�s � w� x
w

w dw

�

1

2πi
E

1
2
�σ�δ�iT

1
2
�σ�δ�iT

1

ζ�s � w� x
w

w dw �
1

2πi
E 2�iT

1
2
�σ�δ�iT

1

ζ�s � w� x
w

w dw.

(19)

Compute the �rst integral using the Residue Theorem; the only singularity
in R is the origin because in this integral we have:

Re�s � w� � Re�s� �Re�w� ' σ �
1

2
� σ � δ �

1

2
� δ %

1

2
.

Therefore, having assumed true RH, 1
ζ�s�w� doesn't have any singularities inside

the contour.

In 0 the residue is:

Res0 � 1

ζ�s � w� x
w

w 
 � lim
w�0

w

ζ�s � w� x
w

w � lim
w�0

x
w

ζ�s � w� � 1

ζ�s� .
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Hence equation 19 becomes:

1

2πi
E 2�iT

2�iT

1

ζ�s � w� x
w

w dw �
1

ζ�s� � 1

2πi
E

1
2
�σ�δ�iT

2�iT

1

ζ�s � w� x
w

w dw

�

1

2πi
E

1
2
�σ�δ�iT

1
2
�σ�δ�iT

1

ζ�s � w� x
w

w dw �
1

2πi
E 2�iT

1
2
�σ�δ�iT

1

ζ�s � w� x
w

w dw.

(20)

Therefore, using equation 12:

=
n$x

µ�n�
ns �O �x2

T
� � 1

ζ�s� � 1

2πi
E

1
2
�σ�δ�iT

2�iT

1

ζ�s � w� x
w

w dw

�

1

2πi
E

1
2
�σ�δ�iT

1
2
�σ�δ�iT

1

ζ�s � w� x
w

w dw �
1

2πi
E 2�iT

1
2
�σ�δ�iT

1

ζ�s � w� x
w

w dw.

(21)

The �rst and third integral are:

E
1
2
�σ�δ�iT

2�iT

1

ζ�s � w� x
w

w dw �E
1
2
�σ�δ

2

1

ζ�s � u � iT � x
u�iT

u � iT
du

� O �T ϵ�1 E
1
2
�σ�δ

2
x
u
du� � O �T ϵ�1

x
2�

(22)

where we used Theorem 5.

While using 5 for the second integral yields:

1

2πi
E

1
2
�σ�δ�iT

1
2
�σ�δ�iT

1

ζ�s � w� x
w

w dw � E T

�T

1

ζ�s � 1
2
� σ � δ � it�

x
1
2
�σ�δ�it

1
2
� σ � δ � it

idt

� O �x 1
2
�σ�δ E T

�T
�1 � ¶t¶�ϵ�1 dt
 � O �x 1

2
�σ�δ

T
ϵ	 .

(23)

Hence:

=
n$x

µ�n�
ns �

1

ζ�s� �O �T ϵ�1
x
2� �O �x 1

2
�σ�δ

T
ϵ	 .

Considering for example T � x
3, the O-terms tend to zero as x � � and the

result follows.

Let's see how we can use this result to prove Theorem 4:

Proof. of Theorem 4:
Remember the de�nition of the Mertens function:

M�x� �� =
n&x

µ�n�.
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Choose x half an odd number and use equation 12 with s � 0 to obtain:

=
n$x

µ�n�
n0

�M�x� � 1

2πi
E 2�iT

2�iT

1

ζ�w� x
w

w �O �x2

T
� . (24)

Using the same argument used for the last proof but with a di�erent rectangle
R
¬ shown in the picture below, we have:

1

2πi
E 2�iT

2�iT

1

ζ�w� x
w

w �
1

2πi
E

1
2
�δ�iT

2�iT

1

ζ�w� x
w

w dw �
1

2πi
E

1
2
�δ�iT

1
2
�δ�iT

1

ζ�w� x
w

w dw

�

1

2πi
E 2�iT

1
2
�δ�iT

1

ζ�w� x
w

w dw �O �x2

T
� .

(25)

Figure 3: The Rectangle R
¬, notice that it does not contain any singularities.

Therefore, estimating like in equation 23 we have:

M�x� � O �T ϵ
x

1
2
�δ	 �O �T ϵ�1

x
2� . (26)

Taking T � x
2, we have:

M�x� � O �x2ϵ� 1
2
�δ	 �O �xϵ� � O �x 1

2
�ϵ	

the Theorem follows for x any half an odd integer and so generally.
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