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Theorem 1 (Ramanujan’s Master Theorem). Let ¢(s) be an analytic complex
function, defined on the half-plane

H(6) ={s € C: Re(s) =z =6}

for some 0 < § < 1. Suppose also that, for some A < w, ¢ satisfies the growth

condition:
|p(o + ib)| < CePo Al

for all s = o +1b € H(6).

Then - .
[Ty s = r6aa-9) )
n=0

for all 0 < Re(s) < 6.

Remark 1. The condition 0 < Re(s) < § is necessary to ensure the convergence
of the integral without imposing any additional hypothesis on the function ¢(s).
It is evident that if the integral converges in a larger region of the complex plane,
the result remains valid due to the principle of analytic continuation.

Ramanujan’s Master Theorem is a corollary of another formula, also first
found in Ramanujan’s notebooks:

Theorem 2. Under the hypothesis of Theorem 1 we have:
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[Ty otm=0i = ——o(=s). 2)
0 = sin(sm)

The following demonstration takes inspiration by Hardy’s original proof
[2] and the more recent semi-expository paper [1] that also discusses a multi-
dimensional extension of the theorem.



Proof. Let 1 < t < ¢, the hypothesis on the growth of the function @(s)
ensures that the series:

o(t) = Y o(n)(~1)"
n=0
converges (this can be simply seen using the root test).

Consider the integral on the contour C' seen in Figure 1:
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with —% <c-T =< —%. This hypothesis on T is only to ensure that, while

traveling on this contour, the function qin?m) avoids its singularity in s = —1.
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Figure 1: The contour C

Remark 2. Mind that ¢ < § and ¢(s) is well defined for Re(s) = —=5. On the
contour C' we have Re(s) < ¢ = Re(-s) =2 —c > =0 = ¢(—s) is well defined.
This stays true in the collection of contours that will be later defined.
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Focus on the integral on the semi circumference Sy, calling s = ¢ + Te"” we

have:
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By hypothesis we have:
¢(—c - Tew) = ¢(—c — T cos(#) — 1T sin(6))
U

|(]5(—C _ T6i9)| < CeP(—c—Tcos(O))+AT| sin(0)|
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and 1 <t< e_P, therefore:
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Focus now on the term
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m, start by using Euler’s identity to
obtain:

|sin(7r(c + Teie))| = | sin(mwe + 77T cos(0) + iwT sin(0))]

then, remembering that sin(a + 8) = sin(a) cos(8) + cos(a)sin(3) and that
sin(iz) = —isinh(-z), cos(iz) = cosh(—z) we find:

~~

c+ Tew))| = | sin(me + 7T cos(0) + inT sin(0))|
mc + 7T cos(0)) cos(inT sin(0)) + cos(me + 7T cos(0)) sin(inT sin(6))|
mc + 7T cos(0)) cosh(—nT sin(0)) + cos(we + 7T cos(0))(—i sinh(—7T sin(0)))|
(0)) cosh(wT sin(0)) + i cos(me + wT cos(#)) sinh (7T sin(6))].
(5)
This final equality is already separated into its real and imaginary parts,

allowing for a straightforward calculation of the absolute value:

| sin(me + 7T cos(6)) cosh(nT sin(0)) + i cos(me + T cos(#)) sinh(7T sin(6))|
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= \/sin2(7rc + 7T cos(6)) cosh? (7T sin(#)) + cos?(mwe + T cos(#)) sinh? (7T sin(6)).
(6)
Remember now that:
cosh®(7Tsin(0)) = 1 + sinh® (7T sin(0))
and
cos’ (e + 7T cos(0)) = 1 — sin’(7e + 7T cos(0)).

Hence:

\/sin2(7rc + 7T cos(6)) cosh?(nT sin(#)) + cos?(me + 7T cos(0) ) sinh? (7T sin(6))

= \/SinQ(ﬂ'C + 7T cos(6))(1 + sinh?(7Tsin(#))) + (1 = sin?(7e + 7T cos(#))) sinh? (7T sin(6))

= \/sinz(ﬂc + 7T cos(6)) + sinh? (7T sin(6)).
(7)



In conclusion:

|sin(7r(c + Tem))| = \/sinz(wc + 7T cos(A)) + sinh? (7T sin(9)) = \/sinhQ(ﬂTsin(G))
= sinh(#T| sin(0)]).
(8)

Using this result in the estimates 3 we have:
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Consider now the succession of contours C), composed by the straight line
from ¢ — T}, to ¢ + iT}, and the semicircle Sy, with growing radii 7}, satisfying
—%k <c-T, =< —%k. This hypothesis on T}, ensures that, while traveling on
these contours, the function Sinz’ﬂs) avoids its singularities in s = —k (see Figure
2).

Denote C' the limit contour as k — 0.

Figure 2: The Contour succession Cy



In this case, using the estimates 9:
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due to the fact that, by hypothesis, A < 7. Notice that £k - oo = T}, — oo.
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Therefore:

1 T s 1 c+i00 T s
2mi Ic' sin(ﬁs)(b(_s)t ds = 2mi L_m sin(ws)¢(_8)t ds.

We can calculate the first integral using the Residue Theorem:
The function ¢(s) is supposed analytic, so the only singularities contained in the

contour C" are those of the function #m)’ that is to say, the only singularities

of the function in the interior of the domain are s = 0, -1, -2, =3, ---.
Those are simple poles, so the residues of the integrand can be computed easily:
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Therefore:
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JC' ng(—s)t ds = 5 I d(—s)t "ds = nz=o¢(n)(_t) = O(1)

2mi (ms) c—ivo SIN(7TS)
for any 0 < ¢ < 1.

We can now deduce 2 by using the well-know Mellin Inversion Formula:

Theorem 3 (Mellin Inversion formula). Assume that F(s) is analytic in the
strip a < Re(s) < b and define f by:

1 c+1i00

F(t) 1= — F(s)t™ds.
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If this integral converges absolutely and uniformly for c € (a,b) then

F(s) = Loo £ ()t (10)

In our case, we just proved that:
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Let’s see how this Theorem 2 implies Theorem 1:

Proof of Ramanujan’s Master Theorem:

Define the function:

__9(s)
o(s) = I(1+s)
and rewrite equation 2 using this new function:

Lw 7Y G(n) (=) dt = ——(~s)

= sin(sm)
U
® 1w ¢(n) n T d(s)
Io ! nzzof(1+n)(_t dt = sin(sm) (1 + s)
U
o1 - ¢,(n) na, T ¢,(s)
Jo ! 7;) n! (=t)dt = sin(sm) I'(1 + s)

due to the fact that I'(n + 1) = n! for every n € N,

Using another known property of the Gamma Function:

P01 =) = Sinzrﬂs)

!
=T(-s)T'(1 + s)

™
sin(ms)
(you can find on our site a demonstration of this Relation to the Sine Function.)
We finally have:
o] 1 !
© 1y 0(n) T _¢(s)
J Y o (=t)"dt =

0

= on sin(sm) T(1 + s)
U
LOO 3 ¢1(;) (=)"dt = T(=5)¢'(s)
n=0

which proves Theorem 1.


https://positiveincrement.com/definition-of-the-gamma-function
https://positiveincrement.com/relation-to-the-sine-function
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Thank you!

We hope this lesson has heen beneficial in studying
this interesting topic.
For more lessons or demonstrations, visit our website.
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