
The original purpose of de�ning the Riemann zeta, was to investigate the dis-
tribution of prime numbers, particularly the function π�x�, which counts the
number of primes less than a given quantity.
Riemann's e�orts in his 1859 article, "On the Number of Prime Numbers Less
Than a Given Quantity," made signi�cant waves in the world of mathematics.
Still, he could not prove the conjecture initially stated by Legendre in 1797.

However, building on Riemann's theory of the Zeta function, Jacques Hadamard
and Charles Jean de la Vallée-Poussin independently proved the conjecture in
1896.

Remark 1. The following proof takes inspiration from the one appearing in [2].

Theorem 1 (The Prime Number Theorem). Let π�x� denote the number of
primes & x. then:

π�x� � x

log x
, as x��. (1)

We will need the following lemma:

Lemma 1.

log ζ�s� � sE �

2

π�x�
x�xs � 1�dx (2)

for Re�s� % 1.

Proof. Remember Euler's Product Formula for the Riemann Zeta function:

ζ�s� �5
p

1

1 � p�s
�5

p

�1 � p�s��1 (3)

where the product runs over all prime numbers p. This implies:

log ζ�s� � �=
p

log �1 � 1

ps

 . (4)

While, the de�nition of π�x� implies that:

π�n� � π�n � 1� � w1 if n is a prime number

0 if n is not a prime number.
(5)
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Hence, equation 4 can be written as:

log ζ�s� � �=
p

log �1 � 1

ps

 � � �

=
n�2

�π�n� � π�n � 1�� log �1 � 1

ns

 . (6)

Here π�1� � 0 while for every other n there are only two factors π�n�, one
multiplied by log �1 � 1

ns � and one multiplied by � log �1 � 1
�n�1�s

	.
Therefore, we can write the series as:

�

=
n�2

�π�n� � π�n � 1�� log �1 � 1

ns

 � �

=
n�2

π�n� �log �1 � 1

ns

 � log �1 � 1�n � 1�s 

 .

(7)
It follows that we can develop further equation 6:

log ζ�s� � � �

=
n�2

�π�n� � π�n � 1�� log �1 � 1

ns



� �

�

=
n�2

π�n� �log �1 � 1

ns

 � log �1 � 1�n � 1�s 



�

�

=
n�2

π�n�E n�1

n

s

x�xs � 1�dx � sE
�

2

π�x�
x�xs � 1�dx

(8)

where we are allowed to rearrange the series since:

π�n� & n and log�1 � n�s� � O�n�Re�s�� with Re�s� % 1.

To obtain the result of the Prime Number Theorem, we will invert equation
2 into an explicit formula for π�x�.
Proof of the Prime Number Theorem:

De�ne ω�s� as follows:
ω�s� �� E �

2

π�x�
xs�1�xs � 1�dx. (9)

Then:

log ζ�s�
s �ω�s� � E �

2

π�x�
x�xs � 1�dx�E

�

2

π�x�
xs�1�xs � 1�dx � E

�

2

π�x�
xs�1

dx. (10)

Let's take some time to analyze the function ω�s�:
Since π�x� & x the integral de�ning ω�s� converges uniformly, and is therefore
regular and bounded, for Re�s� ' 1

2
� δ, due to the fact that the integral

E �

2

π�x�
x

1
2
�δ�x 1

2
�δ
� 1�dx

converges uniformly.
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This is similarly proven for ω
¬�s�, since, computing the derivative under the

integral sing:

ω
¬�s� � E �

2
π�x� log x 1 � 2x

s

xs�1�xs � 1�2 dx.
Proceed by di�erentiating equation 10 with respect to s:

log ζ�s�
s � ω�s� � E �

2

π�x�
x�xs � 1�dx � E

�

2

π�x�
xs�1�xs � 1�dx � E

�

2

π�x�
xs�1

dx

�

ζ
¬

�s�

ζ�s�
s � log ζ�s�
s2

� ω
¬�s� � �E �

2

π�x� log x
xs�1

dx

�

�
ζ
¬�s�
sζ�s� � log ζ�s�

s2
� ω

¬�s� � E �

2

π�x� log x
xs�1

dx. (11)

Call ϕ�s� the right-hand side of the equation, i.e.

ϕ�s� �� E �

2

π�x� log x
xs�1

dx. (12)

De�ne also:

g�x� �� E x

0

π�u� log u
u du, h�x� �� E x

0

g�u�
u du. (13)

Remark 2. Mind that, by de�nition of π�x�, π�x� � 0 for x $ 2. Hence, the
same is true for g�x� and h�x�.

Integrating by parts ϕ�s�, using the fact that g
¬�x� � π�x� logx

x
, we obtain:

ϕ�s� � E �

2

π�x� log x
xs�1

dx � E �

0

π�x� log x
xs�1

dx � E �

0
g
¬�x�x�sdx

� sE �

0
g�x�x�s�1dx. (14)

Now, h
¬�x� � g�x�

x
and we can integrate by parts again:

ϕ�s� � sE �

0
g�x�x�s�1dx � sE �

0
h
¬�x�x�sdx

� s
2 E �

0
h�x�x�s�1dx (15)

�

ϕ��s� � ��s�2 E �

0
h�x�xs�1dx

�
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ϕ��s�
s2

� E �

0
h�x�xs�1dx. (16)

Now h�x� is continuous and of bounded variation in any �nite interval and,
since π�x� & x, it follows that, for x % 1, g�x� & x log x and h�x� & x log x.

In conclusion h�x�xk�2 is absolutely integrable over �0,�� if k $ 0.

We can therefore use the inverse Mellin Transform to compute
h�x�

x
:

The Mellin Transform of a complex valued function f�x� is the function:
Mrfx�s� � E �

0
x
s�1

f�x�dx.
Therefore:

ϕ��s�
s2

�M rh�x�x �s�. (17)

While the inverse Mellin Transform is:

M�1rφx�x� � 1

2πi
E c�i�

c�i�
x
�s
φ�s�ds

were c is a real value such that: ϕ�s� � 0 as Im�s� � �� on the line
Re�s� � c, and the integral on the same line converges absolutely.

Therefore, for c % 1:

h�x� � 1

2πi
E c�i�

c�i�

ϕ��s�
s2

x
�s
ds �

1

2πi
E c�i�

c�i�

ϕ�s�
s2

x
s ��ds� � 1

2πi
E c�i�

c�i�

ϕ�s�
s2

x
s
ds

(18)
The integral on the right is absolutely convergent, since ϕ�s� is bounded for

Re�s� ' 1, except in the neighborhood of s � 1

Remark 3. These bounds are proven in detail in [2], page 51.

In the neighborhood of s � 1, we have:

ϕ�s� � 1

s � 1
� log

1

s � 1
��

�

ϕ�s� � 1

s � 1
� ψ�s�

where ψ�s� is bounded for Re�s� ' 1, ¶s � 1¶ ' 1 and ψ�s� has a logarithmic
in�nity as s� 1.

Now

h�x� � 1

2πi
E c�i�

c�i�

ϕ�s�
s2

x
s
ds �

1

2πi
E c�i�

c�i�

x
s

�s � 1�s2 ds � 1

2πi
E c�i�

c�i�

ψ�s�
s2

x
s
ds.
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The �rst term can be computed using the Residue Theorem, we can consider
the contour C de�ned as the half-circle with side on the line Re�s� � c and
extending to its left (see Figure 1).

It's easy to see that as the radius T goes to in�nity the integral on the arc

goes to zero and we are left with the term D c�i�
c�i�

x
s

�s�1�s2
ds. This is therefore

equal to the sum of the residues on the left of the line Re�s� � c.

Figure 1: The contour C

In conclusion, the �rst term can be computed as:

1

2πi
E c�i�

c�i�

x
s

�s � 1�s2 ds � x � log x � 1.

In the other term we can apply Cauchy's Theorem to the rectangle �1 �
iT, c � iT �, with an indentation of radius ϵ around s � 1 and make T � �,
ϵ� 0 to basically compute the integral for c � 1 (see �gure 2).

Hence:

1

2πi
E c�i�

c�i�

ψ�s�
s2

x
s
ds �

1

2πi
E 1�i�

1�i�

ψ�s�
s2

x
s
ds �

1

2πi
E �

�

ψ�1 � it��1 � it�2 x1�it�idt�
�

h�x� � x � log x � 1 �
x

2π
E �

��

ψ�1 � it��1 � it�2 xitdt.
The last integral tends to zero as x � �, by the extension to Fourier

integrals of the Riemann-Lebesgue Theorem.

Remark 4. This is Theorem 1 of [1].
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Figure 2: The contour R

Therefore:
h�x� � x.

To conclude, we need the following Lemma:

Lemma 2. Let f�x� be positive and non-decreasing, such that:

E x

1

f�u�
u du � x

as x��.

Then

f�x� � x.
Proof. Consider a given positive number δ, then by hypothesis we have:

�1 � δ�x $ E x

1

f�u�
u du $ �1 � δ�x, �x % x0�δ��.
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Hence, for any positive ϵ:

E x�1�ϵ�

x

f�u�
u du � E x�1�ϵ�

1

f�u�
u du � E x

1

f�u�
u du $ �1 � δ��1 � ϵ�x � �1 � δ�x

�

E x�1�ϵ�

x

f�u�
u du $ �2δ � ϵ � δϵ�x.

But f�x� is non-decreasing, so:
E x�1�ϵ�

x

f�u�
u du ' f�x�E x�1�ϵ�

x

du
u % f�x�E x�1�ϵ�

x

du

x�1 � ϵ� � ϵ

1 � ϵ
f�x�

�

ϵ

1 � ϵ
f�x� $ E x�1�ϵ�

x

f�u�
u du $ �2δ � ϵ � δϵ�x
�

f�x� $ x�1 � ϵ� �1 � δ � 2δ
ϵ 
 .

Taking for example ϵ �
Ó
δ, it follows that:

lim sup
f�x�
x & 1.

With the same reasoning, considering the integral:

E x

x�1�ϵ�

f�u�
u du

we obtain

lim inf
f�x�
x ' 1

and the lemma follows.

We have proven that h�x� � x hence, this lemma implies:

h�x� � E x

1

g�u�
u du � x

�

g�x� � x
�

g�x� � E x

1

π�u� log u
u du � x

�

π�x� log x � x
which proves 1.
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