
In 1859, Bernhard Riemann published the article titled "Ueber die Anzahl der
Primzahlen unter einer gegebenen Grösse," [3] which translates to "On the Num-
ber of Prime Numbers less than a Given Quantity" [2]. This work laid the
foundation for centuries of future research.

In this initial analysis, we will focus on the �rst few pages of the article,
which lead to the statement of the Hypothesis.

1 De�nition of the Riemann Zeta and its �rst

functional equation

The article starts by de�ning the now famous Riemann Zeta function ζ�s�:
ζ�s� � �

=
n�1

1

ns

and recalling a property already known to Euler:

ζ�s� � �

=
n�1

1

ns
�5

p

1

1 � 1
ps

(1)

where the product is over every prime number p. Riemann provides no proof
for this already well-established result, but you can �nd the details on our site.

Both expressions only converge when Re�s� % 1; the �rst pages of the paper
are dedicated to �nding di�erent expressions of the function that remain valid
for any s j 1.

First Riemann notices that:

E �

0
x
s�1

e
�nx

dx � E �

0
� yn	s�1 e�y dyn �

1

ns
E �

0
y
s�1

e
�y
dy �

Γ�s�
ns

here he used the de�nition of the Gamma function: Γ�s� �� D�
0
y
s�1

e
�y
dy.
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Remark 1.1. In his paper Riemann uses the notation Π�s� to indicate the
Gamma function, we will always use Γ�s� in this analysis; if one wishes to
follow this side to side with the original, mind that Γ�s� � Π�s � 1�.

Therefore, summing both sides from n � 1 to � yields:

ζ�s�Γ�s� � E �

0

x
s�1

ex � 1
. (2)

Equation 2 is one of the �rst examples that illustrates the relationship between
the Gamma function and the Riemann Zeta function, Visit our website for more
details.

The author considers now the integral:

E
C

��x�s�1
ex � 1

dx

where C is a contour that starts from ��, circles around the value 0 containing
no other point of discontinuity of the integrand in its interior, let's call the
radius of this circle δ, and then goes back to �� (see Figure 1).

Figure 1: The contour C

Now to simplify this integral, we write ��x�s�1 � e�s�1� log��x�, making �rst
sure that log��x� is well de�ned for x % 0:

Using the fact that �1 � e
iπ
� e

�iπ
we can write:

log��x� � log�eiπx� � iπ � log�x�
and

log��x� � log�e�iπx� � �iπ � log�x�.
However we must make choices that preserve the continuity of log��x� as x

moves along the contour in the complex plane, Riemann also speci�es that we
want log��x� to be real when x is negative.

Therefore we must choose log��x� � �iπ � log�x� for the piece of the contour
from �� to 0 and to preserve continuity, log��x� � iπ � log�x� on the way
back from 0 to �� (see Figure 2).

2

https://positiveincrement.com/relation-to-the-gamma-function-1
https://positiveincrement.com/relation-to-the-gamma-function-1


Figure 2: Appropriate choices of the logarithmic function

Remark 1.2. This type of contour integrals are widespread in Analytic Number
Theory, often called Hankel's loop integrals.

Thus the integral becomes:

E
C

��x�s�1
ex � 1

dx � E δ

��

e
�s�1� log��x�

ex � 1
dx � E ��

δ

e
�s�1� log��x�

ex � 1
dx � E

¶x¶�δ

��x�s�1
ex � 1

dx

� E δ

��

e
�s�1���iπ�log�x��

ex � 1
dx � E ��

δ

e
�s�1��iπ�log�x��

ex � 1
dx � E

¶x¶�δ

��x�s�1
ex � 1

dx

� e
�s�1���iπ� E δ

��

x
s�1

ex � 1
dx � e

�s�1��iπ� E ��

δ

x
s�1

ex � 1
dx � E

¶x¶�δ

��x�s�1
ex � 1

dx

� e
�iπs

� e
iπ E δ

��

x
s�1

ex � 1
dx � e

iπs
� e

�iπ E ��

δ

x
s�1

ex � 1
dx � E

¶x¶�δ

��x�s�1
ex � 1

dx

� �e
�iπs E δ

��

x
s�1

ex � 1
dx � e

iπs E ��

δ

x
s�1

ex � 1
dx � E

¶x¶�δ

��x�s�1
ex � 1

dx

� e
�iπs E ��

δ

x
s�1

ex � 1
dx � e

iπs E ��

δ

x
s�1

ex � 1
dx � E

¶x¶�δ

��x�s�1
ex � 1

dx

� �e�iπs � eiπs�E ��

δ

x
s�1

ex � 1
dx � E

¶x¶�δ

��x�s�1
ex � 1

dx.

(3)

Notice now that, on the circle ¶x¶ � δ we have, denoting s � σ � it:
¶��x�s�1¶ � ¶xs�1¶ � ¶elog�x��s�1�¶ � ¶e�log�¶x¶��iarg�x���σ�1�it�¶
� ¶elog�¶x¶��σ�1��targ�x� � ei�log�¶x¶�t�arg�x�σ�1�¶
� e

�σ�1� log�¶x¶��targ�x�
& ¶x¶σ�1e2π¶t¶

and

¶ex � 1¶ % A¶x¶
(4)

for an adequate constant A.
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Therefore the integral around the circle can be estimated by:

»»»»»»»»»E¶x¶�δ

��x�s�1
ex � 1

dx
»»»»»»»»» & E¶x¶�δ

»»»»»»»»»
��x�s�1
ex � 1

»»»»»»»»» dx & E¶x¶�δ

¶x¶σ�1e2π¶t¶
A¶x¶ dx �

2πe
2π¶t¶

A
δ
σ�2

.

(5)

Hence the integral tends to zero with δ if σ % 2.

Thus, considering δ � 0 in equation 3, we have derived the �rst formula
presented by Riemann:

E
C

��x�s�1
ex � 1

dx � �e�iπs � eiπs�E ��

0

x
s�1

ex � 1
dx (6)

remembering that sin�πs� � e
iπs

�e
�iπs

2i
� �2i sin�πs� � �e�iπs � eiπs� we �nd:

E
C

��x�s�1
ex � 1

dx � �2i sin�πs�E ��

0

x
s�1

ex � 1
dx

�

iE
C

��x�s�1
ex � 1

dx � 2 sin�πs�E ��

0

x
s�1

ex � 1
dx

therefore, using equation 2:

2 sin�πs�Γ�s�ζ�s� � iE
C

��x�s�1
ex � 1

dx. (7)

2 Consequences of this functional equation

With this formula, Riemann notices two important results:

First, the integral is a well de�ned function of s. This is due to the fact that
e
x
grows much faster than x

s�1
as x � �. Therefore, the integral converges

uniformly in any �nite region of the s-plane.
As a result, the equation provides the value of the function ζ�s� for all
complex values of s, demonstrating that the function is single-valued

and �nite for all �nite values of s, except at s � 1.

Second, Riemann claims that ζ�s� � 0 when s is a negative even inte-

ger; these are known as the Trivial Zeros.
The validity of this statement is not as straightforward as it may seem; we will
take some time to explain it:

Start by using the Relation to the Sine Function for the Gamma Function:

Γ�s�Γ��s� � � π

s sin�πs� (8)

�

Γ�s� sin�πs� � � π

sΓ��s�
4
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so that equation 7 can be written as:

�
2π

sΓ��s�ζ�s� � iEC
��x�s�1
ex � 1

dx

�

ζ�s� � i�sΓ��s�
2π

E
C

��x�s�1
ex � 1

dx � i
Γ�1 � s�

2π
E
C

��x�s�1
ex � 1

dx. (9)

To work on this integral, remember that the function x
ex�1

is analytic near
x � 0 and can therefore be expanded as

x

ex � 1
�

�

=
m�0

Bmx
m

m!

where the coe�cients Bm are by de�nition the Bernoulli numbers. This ex-
pansion is valid in the disk ¶x¶ $ 2π.

With this expansion, equation 9, with δ $ 2π and s � �n, n � 0, 1, 2,�
becomes:

ζ��n� � iΓ�n � 1�
2π

E
C

��x��n�1
ex � 1

dx � i
Γ�n � 1�

2π
��eiπn � e�iπn�E ��

δ

x
�n�1

ex � 1
dx � E

¶x¶�δ

��x��n�1
ex � 1

dx�
� i

Γ�n � 1�
2π

E
¶x¶�δ

��x��n�2 �x

ex � 1
dx � �i

Γ�n � 1�
2π

E
¶x¶�δ

��x��n�2 x

ex � 1
dx

�
Γ�n � 1�

2πi
E

¶x¶�δ
��x��n�2 � �

=
m�0

Bmx
m

m!
� dx

�

�

=
m�0

Γ�n � 1�Bm
m!

��1�n 1

2πi
E

¶x¶�δ
x
m�n�2

dx

(10)

we are allowed to switch the integral and the series thanks to Lebesgue's domi-
nated convergence theorem.

The last integral can be calculated using the residue theorem, we have to
separate 3 possible cases:

~������������
m % n � 1¼ The function is holomorphic¼ D¶x¶�δ xm�n�2dx � 0.

m � n � 1¼ The residue of the function in x � 0 is 1¼ D¶x¶�δ x�1dx � 2πi.

m $ n � 1¼ The residue of the function in x � 0 is 0¼ D¶x¶�δ xm�n�2dx � 0.

Therefore:

ζ��n� � �

=
m�0

Γ�n � 1�Bm
m!

��1�n 1

2πi
E

¶x¶�δ
x
m�n�2

dx � n!
Bn�1�n � 1�!��1�n

�

ζ��n� � ��1�nBn�1
n � 1

. (11)

It is a known property of the Bernoulli Numbers that Bk is zero when k is an
odd number bigger than 1, therefore equation 11 proves Riemann's statement.
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3 The second functional equation

The second functional equation presented in the paper is derived from the same
integral, this time for Re�s� � σ $ 0. Instead of being evaluated in a positive
sense around the speci�ed domain, the integral is evaluated in a negative sense
around a new domain C∆. This domain consists of a larger circle, with a radius
∆ % δ, which we will refer to as S∆. We then intersect this larger circle with a
section of the original contour C (see Figure 3).

Figure 3: The contour C∆

We will prove that the integral on the external circle goes to 0 as the radius
goes to in�nity so that, denoting C

¬

the limit contour for ∆� ��:

E
C ¬

��x�s�1
ex � 1

dx � E
C

��x�s�1
ex � 1

dx.

First notice that on the sliced circle S∆ we have �x � ∆�e
iψ

with �π $ ψ $ π
then, writing again s � σ � it:

¶��x�s�1¶ � ∆
σ�1

choose now ∆ big enough so that e
x
� 1 remains bounded away from 0 on that

part of the contour, i.e. ¶ex � 1¶ ' c for some c % 0, we �nd:

»»»»»»»»»ES∆

��x�s�1
ex � 1

dx
»»»»»»»»» & ES∆

»»»»»»»»»
��x�s�1
ex � 1

»»»»»»»»» dx & 2π
∆
σ�1

c

when σ $ 0 this tends to 0 for ∆� ��.

Now the integral D
C ¬

��x�s�1
ex�1

dx can be calculated using the Residue theorem.
In the interior of the domain the integrand has discontinuities only where x be-

comes equal to a whole multiple of �2πi and Res � ��x�s�1
ex�1

, 2nπi	 � ��n2πi�s�1.
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Therefore:

E
C ¬

��x�s�1
ex � 1

dx � �2πi �=
n"Z�

��n2πi�s�1�
� �=

n'1

��n2πi�s�1��2πi� � �n2πi�s�1��2πi��
� �2π�s=

n'1

n
s�1���i�s � is�2�.

(12)

Hence, equation 7 can be written as:

2 sin�πs�Γ�s�ζ�s� � iE
C

��x�s�1
ex � 1

dx � iE
C ¬

��x�s�1
ex � 1

dx � i��2π�s=
n'1

n
s�1���i�s�is�2�.

(13)
We have proven the second functional equation in the paper:

2 sin�πs�Γ�s�ζ�s� � �2π�s=
n'1

n
s�1���i�s�1 � is�1�. (14)

Notice that n
s�1

�
1

n1�s � <n'1 n
s�1

� ζ�1 � s� by de�nition of ζ.
Equation 14 is therefore a relation between ζ�s� and ζ�1 � s�.

Riemann asserts that by utilizing certain properties of the Gamma function,
we can derive a more streamlined version of this relationship. We include some
necessary details:

Firstly, we just noticed that equation 14 can be written as:

2 sin�πs�Γ�s�ζ�s� � ζ�1 � s��2π�s���i�s�1 � is�1�.
Remembering that log�i� � iπ

2
we can write i

s�1
� e

log�i��s�1�
� e

iπ
�s�1�

2 and

��i�s�1 � �i�1�s�1 � e�iπ �s�1�
2 , therefore:

2 sin�πs�Γ�s�ζ�s� � ζ�1 � s��2π�s�e�iπ �s�1�
2 � e

iπ
�s�1�

2 �
�

2 sin�πs�Γ�s�ζ�s� � ζ�1 � s��2π�s2 cos �π �s � 1�
2


 .
Using the known trigonometric identities:

cos��θ� � cos�θ� cos �π
2
� θ	 � sin�θ�

we have:

cos �π �s � 1�
2


 � cos �π �1 � s�
2


 � cos �π
2
� s

π

2
	 � sin �sπ

2
	 (15)

therefore:
sin�πs�Γ�s�ζ�s� � ζ�1 � s��2π�s sin �sπ

2
	 . (16)
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Proceed by using again the Relation to the Sine Function for the Gamma
Function, which also implies:

sin�πs� � π

Γ�s�Γ�1 � s� (17)

so equation 16 becomes:

π

Γ�s�Γ�1 � s�Γ�s�ζ�s� � ζ�1 � s��2π�s sin �πs2 	
�

ζ�s� � π�1ζ�1 � s��2π�s sin �πs
2
	Γ�1 � s�. (18)

Using again 17 we have:

sin �πs
2
	 � π

Γ � s
2
�Γ �1 � s

2
� . (19)

Consider now Legendre's duplication formula for the Gamma function:

2π
1
2 2

�2s
Γ�2s� � Γ�s�Γ �s � 1

2



replacing s by 1�s
2
, this becomes:

2π
1
2 2
s�1

Γ�1 � s� � Γ �1 � s
2


Γ �1 � s � 1

2



�

Γ�1 � s� � 2
�s
π
�

1
2Γ �1 � s

2

Γ �1 � s

2
	 . (20)

Multiplying 20 and 19 we have:

sin �πs
2
	Γ�1 � s� � 2

�s
π
�

1
2 � π

Γ � 1�s
2
�Γ �1 � s

2
�

Γ � s
2
�Γ �1 � s

2
�

�

sin �πs
2
	Γ�1 � s� � 2

�s
π

1
2

Γ � 1�s
2
�

Γ � s
2
� .

Therefore, replacing sin �πs
2
�Γ�1 � s� in equation 18:

ζ�s� � ζ�1 � s��2π�s2�sπ�1π 1
2

Γ � 1�s
2
�

Γ � s
2
�

�

ζ�s�Γ �s
2
	 � ζ�1 � s�Γ �1 � s

2

πs� 1

2

�

π
�

s
2 ζ�s�Γ �s

2
	 � ζ�1 � s�Γ �1 � s

2

π s�1

2 . (21)

This proves that:

The expression ζ�s�Γ �s
2
	π� s

2 is unchanged when s is replaced by 1 � s.
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4 De�nition of Riemann's ξ Function

In the succeeding paragraph, Riemann obtains a very elegant expression for
equation 21.

First he uses the fact that:

E �

0
x

s
2
�1
e
�n

2
πx
dx � E �

0
� y

n2π



s
2
�1

e
�y dy

n2π
�

1

nsπ
s
2

E �

0

y
s
2
�1

ey
dy �

Γ � s
2
�

nsπ
s
2

where he used again the de�nition of the Gamma function.

He then de�nes:

ψ�x� �� �

=
n�1

e
�n

2
πx

and sums both sides of the equality, supposing σ % 1, to obtain:

�

=
n�1

1

ns
�

Γ � s
2
�

π
s
2

�

Γ � s
2
� ζ�s�
π

s
2

�

�

=
n�1

E �

0
x

s
2
�1
e
�n

2
πx
dx � E �

0
x

s
2
�1
� � �

=
n�1

e
�n

2
πx� dx
(22)

where the inversion of the order of summation and integration is justi�ed by
absolute convergence as, for σ % 1:

�

=
n�1

E �

0
x

σ
2
�1
e
�n

2
πx
dx �

Γ �σ
2
� ζ�σ�
π

1
2
σ

converges.

Therefore:

Γ �s
2
	π� s

2 ζ�s� � E �

0
ψ�x�x s

2
�1
dx. (23)

The function ψ�x� satis�es the equation:
2ψ�x� � 1 � x

�
1
2 �2ψ � 1x
 � 1
 (24)

Riemann assumes this nontrivial fact, but a rigorous proof can be found on our
site. Note that in the referred text, the function is denoted ω�x�.
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We can use 24 to elaborate 23:

ζ�s�Γ �s
2
	π� s

2 � E �

0
x

s
2
�1
ψ�x�dx � E 1

0
x

s
2
�1
ψ�x�dx � E �

1
x

s
2
�1
ψ�x�dx

� E 1

0
x

s
2
�1 � 1Ó

x
ψ � 1x
 � 1

2
Ó
x
�

1

2
� dx � E �

1
x

s
2
�1
ψ�x�dx

� E 1

0

x
s
2
�1Ó
x
ψ � 1x
 dx � E

1

0

x
s
2
�1

2
Ó
x
dx �

1

2
E 1

0
x

s
2
�1
dx � E �

1
x

s
2
�1
ψ�x�dx

� E 1

0
x

s
2
�1 1Ó

x
ψ � 1x
 dx � 1

2
E 1

0
x

s
2
�

3
2 dx �

1
s � E

�

1
x

s
2
�1
ψ�x�dx

� E 1

0
x

s
2
�1 1Ó

x
ψ � 1x
 dx � 1

s � 1
�

1
s � E

�

1
x

s
2
�1
ψ�x�dx.

(25)

Changing variable in the �rst integral to y � 1
x
:

ζ�s�Γ �s
2
	π� s

2 �
1

s�s � 1� � E
1

�

�y�1� s
2
�1 Ó

y � ψ�y� ��dy
y2


 � E �

1
x

s
2
�1
ψ�x�dx

�
1

s�s � 1� � E
�

1

y
�

s
2
�

3
2

y2
ψ�y� ��dy� � E �

1
x

s
2
�1
ψ�x�dx

�
1

s�s � 1� � E
�

1
y
�

s
2
�

1
2ψ�y�dy � E �

1
x

s
2
�1
ψ�x�dx

�
1

s�s � 1� � E
�

1
�x� s

2
�

1
2 � x

s
2
�1	ψ�x�dx

�
1

s�s � 1� � E
�

1

ψ�x�
x �x s

2 � x
1�s
2 	 dx.

(26)

It's at this point that Riemann de�nes the ξ function:

ξ�t� �� Γ �s
2
� 1	 �s � 1�π� s

2 ζ�s� (27)

where s � 1
2
� it and t " C.

Remark 4.1. This is the original de�nition found in the paper; it is sometimes
considered unintuitive and has mostly been substituted with the de�nition:

ξ�s� �� s�s � 1�
2

Γ �s
2
	π� s

2 ζ�s�
for s " C, which is completely equivalent.
Additionally, it is important to note that equation 21 proves that: ξ�s� � ξ�1�s�
(or ξ�t� � ξ�1� t� in Riemann's notation), a more analytical proof of the same
property can be found on our site.
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What we have proven is that:

ζ�s�Γ �s
2
	π� s

2 �
1

s�s � 1� � E
�

1
ψ�x� �x s

2
�1
� x

�
1�s
2 	 dx

�

ζ�s�Γ �s
2
	π� s

2
s

2
�s�1� � 1

s�s � 1� � s2�s�1�� s2�s�1�E
�

1
ψ�x� �x s

2
�1
� x

�
1�s
2 	 dx

�

ζ�s�Γ �s
2
� 1	π� s

2 �s � 1� � 1

2
�
s

2
�s � 1�E �

1
ψ�x� �x s

2
�1
� x

�
1�s
2 	 dx

�

ξ�t� � 1

2
�
s

2
�s � 1�E �

1
ψ�x� �x s

2
�1
� x

�
1�s
2 	 dx (28)

where we used the known property of the Gamma function: zΓ�z� � Γ�z � 1�.
Therefore, remembering that s � 1

2
� it:

ξ�t� � 1

2
�

1

2
�1
2
� it
 �1

2
� it � 1
E �

1
ψ�x� �x� 1

2
�it� 1

2
�1
� x

�
1�� 12 �it�

2 
 dx
�

1

2
�

1

2
�1
2
� it
 ��1

2
� it
E �

1
ψ�x� �x� 3

4
�i t

2 � x
�

3
4
�i t

2 	 dx
�

1

2
�

1

2
��1

4
� t

2
E �

1
ψ�x�x� 3

4 �xi t2 � x�i t2 	 dx
�

1

2
�

1

2
�t2 � 1

4

E �

1
ψ�x�x� 3

4 �ei t2 log�x�
� e

�i t
2
log�x�	 dx

�
1

2
�

1

2
�t2 � 1

4

E �

1
ψ�x�x� 3

4 2 cos � t
2
log�x�
 dx.

(29)

We obtain the equation:

ξ�t� � 1

2
� �t2 � 1

4

E �

1
ψ�x�x� 3

4 cos � t
2
log�x�
 dx. (30)

Riemann proceeds by claiming that the ξ function also satis�es:

ξ�t� � 4E �

1

d

dx
�x 3

2ψ
¬�x��x� 1

4 cos � t
2
log�x�
 dx. (31)

this is not obvious and requires a few steps, we will add some detail to the
passages laid out in [1].
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Starting again from 28 we have:

ξ�t� � 1

2
�
s

2
�s � 1�E �

1
ψ�x� �x s

2
�1
� x

�
1�s
2 	 dx � 1

2
�
s

2
�1 � s�E �

1

ψ�x�
x �x s

2 � x
1�s
2 	 dx

integrating by parts:

�
1

2
�
s

2
�1 � s�E �

1

d

dx
wψ�x� �x

s
2

s
2

�
x

1�s
2

1�s
2

�} dx � s

2
�1 � s�E �

1
ψ
¬�x� �x

s
2

s
2

�
x

1�s
2

1�s
2

� dx
�

1

2
�
s

2
�1 � s� »»»»»»»»»»ψ�x�

x
s
2

s
2

�
x

1�s
2

1�s
2

»»»»»»»»»»
�

1

�
s

2
�1 � s�E �

1
ψ
¬�x� �x

s
2

s
2

�
x

1�s
2

1�s
2

� dx
�

1

2
�
s

2
�1 � s�ψ�1� �2s � 2

1 � s
� � E �

1
ψ
¬�x� ��1 � s�x s

2 � sx
1�s
2 � dx

�
1

2
� ψ�1� � E �

1
ψ
¬�x� ��1 � s�x s

2 � sx
1�s
2 � dx � 1

2
� ψ�1� � E �

1
ψ
¬�x�x 1

2 ��1 � s�x s�1
2 � sx

�
s
2 � dx

integrating by parts again:

�
1

2
� ψ�1� � E �

1

d

dx
�x 3

2ψ
¬�x���2x s�1

2 � 2x
�

s
2 �� dx � E �

1

d

dx
�x 3

2ψ
¬�x�� ��2x s�1

2 � 2x
�

s
2 �dx

�
1

2
� ψ�1� � »»»»»»x

3
2ψ

¬�x���2x s�1
2 � 2x

�
s
2 �»»»»»»

�

1
� E �

1

d

dx
�x 3

2ψ
¬�x�� �2x s�1

2 � 2x
�

s
2 �dx

�
1

2
� ψ�1� � ψ¬�1���2 � 2� � E �

1

d

dx
�x 3

2ψ
¬�x�� �2x s�1

2 � 2x
�

s
2 �dx

(32)

Notice now that di�erentiating 24 we have:

d

dx
2ψ�x� � 1 �

d

dx
x
�

1
2 �2ψ � 1x
 � 1


�

2ψ
¬�x� � �1

2
x
�

3
2 �2ψ � 1x
 � 1
 � x� 1

2

���2
ψ
¬ � 1
x
�

x2

��
and therefore for x � 1

2ψ
¬�1� � �1

2
�2ψ�1� � 1� � 2ψ

¬�1�
�

4ψ
¬�1� � ψ�1� � �1

2
.
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Hence, utilizing this equality in equation 32:

ξ�t� � 1

2
� ψ�1� � 4ψ

¬�1� � E �

1

d

dx
�x 3

2ψ
¬�x�� �2x s�1

2 � 2x
�

s
2 �dx

�
1

2
�

1

2
� E �

1

d

dx
�x 3

2ψ
¬�x�� �2x s�1

2 � 2x
�

s
2 �dx

� E �

1

d

dx
�x 3

2ψ
¬�x��x� 1

4 �2x s
2
�

1
4 � 2x

�
s
2
�

1
4 �dx

� 2E �

1

d

dx
�x 3

2ψ
¬�x��x� 1

4 �e� s
2
�

1
4
� log�x�

� e
�� s

2
�

1
4
� log�x�
 dx

�xing again s �
1

2
� it we have:

� 2E �

1

d

dx
�x 3

2ψ
¬�x��x� 1

4 �ei� t
2
� log�x�

� e
�i� t

2
� log�x�
 dx

(33)

�

ξ�t� � 4E �

1

d

dx
�x 3

2ψ
¬�x��x� 1

4 cos � t
2
log�x�
 dx.

5 The Riemann Hypothesis and the Number of

zeros in the critical strip

The following paragraph is crucial, as it presents Riemann's conjecture, which
is now known as the Riemann Hypothesis. The author begins by stating
that the function ξ�t� is �nite for all �nite values of t, as can be seen from its
equations.

He then notices that, for Re�s� % 1, using 1 we have:

log�ζ�s�� � log �5
p

�1 � p�s��1� �=
p

log ��1 � p�s��1� � �=
p

log ��1 � p�s��
(34)

that remains �nite; also the same is true for the logarithms of the other factors
of ξ�t�.

Therefore, if Re�s� � Re � 1
2
� it� % 1 then log�ξ�t�� is �nite, hence ξ�t� j 0.

Given that Re � 1
2
� it� � 1

2
� Im�t�, it follows that:
Im�t� $ �1

2
� ξ�t� j 0.

and also:

Im�t� % 1

2
� �Im�t� $ �1

2
� Im�1 � t� $ �1

2
� ξ�1 � t� j 0� ξ�t� j 0

as we have noticed in Remark 4.1 that ξ�t� � ξ�1� t�. It follows that the func-
tion ξ�t� can only vanish if the imaginary part of t lies between � 1

2
and 1

2
.
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Remark 5.1. This last statement is often expressed in a more modern version:

The Nontrivial Zeros of the Riemann Zeta Function satisfy 0 & Re�s� & 1.

It is now well established that they satisfy 0 $ Re�s� $ 1, but this was unknown
at the time.
Let's see why this is an equivalent statement:
Firstly, looking at the de�nition of ξ�t� (27) we can see that ξ�t� j 0� ζ�s� j 0
except for s

2
� 1 " Z&0 � s � �2,�4,�6,�, as those are singularities for the

Gamma Function.
Remembering now that Re�s� � 1

2
� Im�t� then:

Im�t� % 1

2
, Im�t� $ �1

2
� ξ�t� j 0

�

wRe�s� % 1� ζ�s� j 0

Re�s� $ 0, s j �2,�4,�6,�� ζ�s� j 0.

In the following section, the author explains brie�y one last property of the
roots of ξ�t�:

Riemann claims that the number of roots of ξ�t� � 0, whose real parts lie
between 0 and a �xed value T is approximately

T

2π
log � T

2π

 � T

2π
(35)

At this point, he writes a brief sentence that will change the future of mathe-
matics:

"Man �ndet nun in der That etwa so viel reelle Wurzeln innerhalb

dieser Grenzen, und es ist sehr wahrscheinlich, dass alle Wurzeln reell

sind."

"One now �nds indeed approximately this number of real roots

within these limits, and it is very probable that all roots are real"

This is the original statement of the Riemann Hypothesis.

It's equivalent to the modern statement of the Hypothesis:

All Nontrival Zeros of the Riemann Zeta Function lie on the strip Re�s� � 1

2
.

To see this simply remember once again that Re�s� � 1
2
� Im�t� and therefore

t " R� Im�t� � 0� Re�s� � 1

2
.

Riemann doesn't provide a rigorous proof of 35 in the paper, it is instead
attributed to Von Mangoldt that gave a complete demonstration in 1905, in

14



particular, he proved that the number of zeros of ζ�s� in the critical range
0 $ Re�s� $ 1, 0 $ t $ T is:

N�T � � T

2π
log � T

2π

 � T

2π
�O�log�T ��. (36)

We have also provided an in depth proof in our lesson regarding the Riemann-
von Mangoldt formula.
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