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Equivalences of the Riemann Hypothesis are diverse and spread through-
out all of mathematics; however, those typically involve estimates related to
arithmetic functions. The one explained in this lesson, instead, is simply an
equality:

Theorem 1. The Riemann Hypothesis is equivalent to the equality:
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where «y is the Euler-Mascheroni constant: v := lim,,_, o (ZZ=1 % —log n)

The following proof uses several results from Davenport’s book "Multiplica-
tive Number Theory" [2], along with some from Edward’s "Riemann’s Zeta
Function" [3] and Titchmarsh’s and Rodney’s "The theory of the Riemann zeta-
function" [4]. The entire lesson is a more detailed version of the article where
this Theorem was first stated: "On an equality equivalent to the Riemann hy-
pothesis" by V.V. Volchkov [5].

Proof. Start by considering the Riemann £ function:
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This function also admits a factorization formula:

_ A+Bs _ f 2
fs)=e 1:[(1 >)er (3)
where the product is over all roots p of the € function. Remember that the zeros

of the £ function are the non trivial zeros of the ¢ function.

Computing the logarithmic derivative of 2 yields:
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While, computing the logarithmic derivative of 3 yields:

Therefore:
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Remark 1. It is interesting to see how this last equation exhibits clearly the
pole of ((s) at s =1 and the non trivial zeros s = p. While the trivial zeros are
contained in the term T'.

We want to calculate explicitly the term B. Equation 5 implies that:

£(0) ¢(1)
due to the functional equation £(s) = £(1 — s).
Using the fact that:
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Remark 2. This can be obtained by computing the logarithmic derivative of
Weierstrass product for the Gamma Function.

We have:

We will now prove that:
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We will use Euler’s expression of log 2:
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We have:
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where in the last equality we used the known telescopic series
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Hence, substituting this value in equation 4
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You can find on our site the Limit of the Logarithmic Derivative:
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Therefore:

We can give another interpretation of B: The series ) p_1 converges, pro-
vided one groups together the terms from p and p. If p = ¢ + it, then:
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and we know that ) |p| ™% converges.

It follows from the functional equation for the & function that:
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and therefore, using equation 5:
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It is a known property of the £ function that if p is a zero if and only if 1 — p
is a zero, therefore the terms containing 1 —s—p = —s + (1 — p) and s — p are
identical and cancel each other.
We are left with: )
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Defining the function f; as:
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We have just proven that:
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An important step to prove Theorem 1 is understanding that:

The Riemann Hypothesis is true
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This is due to the fact that f;(c) > 0 for all ¢, ¢ in the critical line, therefore
the sum is strictly increasing. Also, the zeros p of the zeta function are sym-
metrical with respect to the critical line.

Hence, if one supposes true RH the sum over all roots has to coincide with
the sum over the roots with ¢ = =, which implies 14.

Conversely, if 14 is true than there cannot exist a root with o # %, other-
wise, by symmetry, there would also be such a root with ¢ > 0 and therefore

Yiso St () > Y o fi (%) =2+2+ 1°g4ﬂ which is a contradiction.

The conclusion of Theorem 1 follows from a computation of the sum: ) ., f; (%),
we will denote it by A.
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here N(z) is the number of zeros of {(s) in the region 0 < o0 <1,0<t <z
(s = o +it).

We have:

Remark 3. This is an example of a Riemann-Stieltjes integral, for details about
this theory we recommend the book "The Stieltjes integral” by G.Convertito and
D. Cruz-Uribe [1].

For those less interested in the complete theory, the wikipedia page on the topic
should offer sufficient knowledge.

The Riemann-Stieltjes integral admits integration by parts, hence:
N(z)
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Due to the fact that N(0) = 0 and N(z) = O(xzlogx), so lim,_ e M =0.
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Remark 4. The behavior of the function N(z) for large x has been studied for
more than a century. This particular formula can be found in several text, for
example [4]] or [3]. Also, we have analyzed it thoroughly in our lesson regarding
the Riemann-von Mangoldt Formula.
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It is known that:
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where S(z) = w is the increment of the argument of ((s) along a
polygonal line with vertices at s =2, s = 2 +iz,s = % + iz,

Remark 5. This can be found again in [}], page 212.
Hence:
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Computing the first two integrals yields:
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The integral I, can be calculated using integration by parts and the fact

that:
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where 9 is the digamma function. Therefore:
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We can also evaluate I; using integration by parts and the estimate:
J S(t O(log ).
Remark 6. This can be found in [4], page 222.
We have:
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Using now the fact that ([4], page 221):
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Thank you!

We hope this lesson has been beneficial in studying
this interesting topic.
For more lessons or demonstrations, visit our website.
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