
Today we will focus on the article "Sur les zéros de la fonction Zeta de
Riemann" by Godfrey Harold Hardy [2].
It's a brief article, but the main result is considered the �rst step made toward
solving the Riemann Hypothesis:

Theorem 1. There is an in�nite number of t " R such that:

ζ �1
2
� it
 � 0.

Proof. Begin by considering the formula:

e
�y
�

1

2πi
E k�i�

k�i�
Γ�u�y�udu (1)

true for Re�y� % 0 and k % 0.

This is often refereed to as the Cahen-Mellin Integral, it is obtained using
the Mellin transformation M. We will go brie�y through the steps necessary to
arrive to the equality, the details can be found in [1].

Given a function f�y� de�ned on the positive real axis 0 $ y $�, the Mellin

transformation M is the operation mapping f in the function F de�ned in
the complex plane as:

M�f ;u� � F �u� �� E �

0
f�y�yu�1dy

F �u� is called the Mellin transform of f .

By de�nition, for f�y� � e�py, p % 0, we have:

M�e�py;u� � E �

0
e
�py

y
u�1

dy � E �

0
e
�y �yp	u�1 dyp � p

�u E �

0
e
�y
y
u�1

dy � p
�u

Γ�u�
for Re�u� % 0.
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Using Fourier's inversion theorem, one can �nd a direct way to invert Mellin's
transformation in:

f�y� � 1

2πi
E k�i�

k�i�
F �u�y�udu.

Therefore, using the fact that F �u� �M�e�py;u� � p�uΓ�u�, we obtain:
e
�py
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Γ�u�du. (2)

Remark 1. This is a more general form of equation 1, it is never mentioned
in the article but, as we will see, it is necessary to proceed with the proof.

Substitute p � n
2
, n j 0, in equation 2 to obtain:
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Notice that we are allowed to change the order of integration and series due to
absolute convergence.

The above formula is only true for k % 1
2
, as the function ζ�2s� has a pole

at s � 1
2
, we can therefore choose to move the integration contour left, if we

remember to add, using the residue Theorem, 2πi times the residue at s � 1
2
,

which is 1
2πi

Õ
π
y
, that is to say:

1 �
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ζ�2u�Γ�u�du. (4)

Remember now the de�nition of Riemann's ξ function:

ξ�s� �� s

2
�s � 1�π� s

2 ζ�s�Γ �s
2
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and of the Ξ function:

Ξ�t� �� ξ �1
2
� it
 .

Using these de�nitions:
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Now, changing variable to u � 1
4
� it, the integral in equation 4 becomes:
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combining with equation 5 we �nd:
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Therefore, equation 3 can be written as:
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Notice that Ξ is an even function:
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where we used the know property of the ξ function: ξ�s� � ξ�1 � s� a rigorous
proof of this can be found on our site.

Using this property, we can rewrite the integral in 8 as:
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Replacing y with y � πe
iα
, � 1

2
π $ α $ 1

2
π, we have:
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Multiply both sides by �
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In conclusion, we have:

E �

0

�eαt � e�αt�Ξ�2t�
1
4
� 4t2

dt � �
π

2
e

1
4
iα�1 � 2ψ�eiα�� � π cos �1

4
α
 (11)

where

ψ�x� � ��

=
1

e
�n

2
πx
.

Remark 2. In the original article Hardy writes F �q� � 1� 2<�n�1 qn
2

, instead

of ψ�x�, where q � e�πeiα .
He also notices that F �q� � θ3�0, τ�; the function θ3 is de�ned as

θ3�z, q� � <���� qn2

e
2πiz

and is an example of the so called Jacobi Theta func-

tions; key functions in many topics of mathematics.
We are using a di�erent notation to match the one used in [3], given that the
following part of the demonstration comes mainly from this other source.

The key formula used by Hardy in the proof of Theorem 1 is obtained from
equation 11 di�erentiating both sides 2p times with respect to α.

Note that, provided α $
1
2
π, we can di�erentiate the above integral with

respect to α any number of times since ζ � 1
2
� it� � O�tA�, Ξ�t� � O�tAe� 1

2
πt�.
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We therefore have:

E �

0

t
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(12)
The next step in the proof is to consider α � 1

2
π and prove that the last

term of equation 12 tends to 0, for all possible choices of p. Hardy does not
prove this in detail, the demonstration that follows is an adaptation of the one
in [3]:

For α � 1
2
π, e

iα
� e

i 1
2
π
� i, therefore we have to focus on ψ�x� when x� i.

It is a known property of the function ψ�x� that:
2ψ�x� � 1 �

1Ó
x
�2ψ � 1x
 � 1� . (13)

This equation comes up often while studying Analytic Number Theory, you can
�nd a demonstration on our site; (mind that there the function is denoted ω�x�).

Equation 13 implies:

ψ�x� � 1Ó
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 � 1
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x
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1

2
(14)

therefore:

ψ�i�δ� � �
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where in the last equality we used the fact that n
2
and n have the same parity.

We can write:
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e
�n

2
πδ�

�

�

=
n�1

e
�n

2
π4δ
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=
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2
π4δ
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(15)
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Using now equation 14 we have:

2ψ�4δ� � ψ�δ� � 2Ó
4δ
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4δ
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2
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(16)

From this last equality, one sees that ψ�i � δ�� 0 for δ � 0, or in other words
that ψ�x� and all its derivatives tend to 0 for x� i along any route in an angle¶ arg�x � i�¶ $ 1

2
π.

Therefore, for α � 1
2
π, equation 12 tends to

��1�pπ
42p

cos � 1
8
π�:

E �

0

t
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2
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� e
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2
πt�Ξ�2t�
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4
� 4t2

dt �
��1�pπ
42p
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8
π
 . (17)

The last step of the proof is the key one, Hardy supposes that we can �nd
a T % 1 such that the function Ξ�t� never changes its sign once we go over this
value and this assumption brings us to a contradiction.
The function Ξ�t� therefore never stops going from positive to negative, which

proves that Ξ�t� � ζ � 1
2
� it� has in�nitely many zeros.

Suppose that, for every t % T % 1, Ξ�t� maintains one sign, say positive.

Consider now equation 17 with p odd:
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p is odd, therefore
��1�pπ
42p

cos � 1
8
π� $ 0 and we have:
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where K � � DT
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dt does not depend on p.

This gives us a contradiction: By our assumption, Ξ�2t� % δ for some positive
δ for every t " �2T, 2T � 1�, therefore:
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where this time K1 � D 2T�12T
�e 1

2πt
�e

�

1
2πt�

1
4
�4t2

dt is positive and still does not depend
on p.

Now using 18 and 19 we have:

KT
2p
% δ�2T �2pK1

�

K % δ2
2p
K1 (20)

but this should be true for any odd integer p, while, if K $ 0 it is obviously

false and for K % 0 is false for any p %
log2� K

K1δ
	

2
.
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