
Theorem 1. Let G�s� be an integral function of �nite order, P �s� a polynomial

and f�s� � G�s�
P �s� . Let:

f�s� � �

=
n�1

an
ns (1)

be absolutely convergent for Re�s� % 1 and

f�s�Γ �s
2
	π� s

2 � g�1 � s�Γ �1
2
�

s

2

π� �1�s�

2 (2)

where

g�1 � s� � �

=
n�1

bn

n1�s

the series being absolutely convergent for Re�s� $ �α $ 0.

Then f�s� � Cζ�s� for some constant C.

Remark 1. Most of the following demonstration comes from [1], we added a
few details to make it clearer.

Proof. De�ne ϕ�x� as:
ϕ�x� �� 1

2πi
E 2�i�

2�i�
f�s�Γ �s

2
	π� s

2x
�

s
2 ds.

Then, using hypothesis 1, we have, for x % 0:

ϕ�x� � 1

2πi
E 2�i�

2�i�
f�s�Γ �s

2
	π� s

2x
�

s
2 ds �

1

2πi
E 2�i�

2�i�

�

=
n�1

an
ns Γ �s

2
	 �πx�� s

2 ds

�

�

=
n�1

an
2πi

E 2�i�

2�i�
Γ �s

2
	 �πn2

x�� s
2 ds.

(3)

This last integral can be computed using the Mellin Transform.
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Recall that the Mellin Transform of a function f�x� is de�ned as:

F �s� �M rf�x�; sx � E �

0
f�x�xs�1

dx.

While the inverse Mellin Transform is:

f�x� �M�1 rF �s�;xx � 1

2πi
E c�i�

c�i�
F �s�x�sds

where c is a real number chosen so that the integral on the right converges.

If we de�ne y � πn
2
x, the integral in equation 3 becomes:

1

2πi
E 2�i�

2�i�
Γ �s

2
	 y� s

2 ds.

Change variable to t � s
2
to obtain:

1

2πi
E 2�i�

2�i�
Γ �s

2
	 y� s

2 ds �
1

2πi
E 1�i�

1�i�
Γ �t� y�t2dt � 2

2πi
E 1�i�

1�i�
Γ �t� y�tdt.

Recognize that 1
2πi
D 1�i�
1�i�

Γ �t� y�tdt is the inverse Mellin Transform of Γ�t�
evaluated at y.

The de�nition of the Gamma Function is:

Γ�s� �� E �

0
e
�x

x
s�1

dt

which one notices is exactly the formula for the Mellin Transform of Γ�s�. There-
fore the inverse Mellin transform of Γ�s� is e�x:

1

2πi
E c�i�

c�i�
Γ�s�x�sds � e

�x

�

ϕ�x� � �

=
n�1

2an
2πi

E 1�i�

1�i�
Γ �t� y�tds � 2

�

=
n�1

ane
�y
� 2

�

=
n�1

ane
�πn

2
x
. (4)

On the other hand, the functional equation 2 implies:

ϕ�x� � 1

2πi
E 2�i�

2�i�
g�1 � s�Γ �1

2
�

s

2

π� �1�s�

2 x
�

s
2 ds.

We want now to move the contour of integration from the vertical line Re�s� � 2
to the vertical line Re�s� � �1� α. To do this we need to ensure that the inte-
grand does not grow too rapidly as ¶Im�s�¶��.

We know that, by hypothesis, f�s� is bounded on Re�s� � 2 and g�1� s� is
bounded on Re�s� � �1 � α.
Since:
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Γ � s
2
�

Γ � 1
2
�

s
2
� � O �¶t¶Re�s�� 1

2 	
it follows that g�1 � s� � O �¶t¶ 3

2 	 on Re�s� � 2.

We can therefore apply Cauchy's Theorem and move the contour of integra-
tion by adding the residues of the poles present in the new region:

ϕ�x� � 1

2πi
E �α�1�i�

�α�1�i�
g�1 � s�Γ �1

2
�

s

2

π� �1�s�

2 x
�

s
2 ds �

m

=
υ�1

Rυ

where R1,�, Rm are the residues at the poles s1,�sm. Hence:

m

=
υ�1

Rυ �

m

=
υ�1

x
�

sυ
2 Pυ�log x� � P�x�

where the Pυ�log x� are polynomials in log x, coming from the derivatives in ds

of x
�

s
2 .

Thus:

ϕ�x� � 1

2πi
E �α�1�i�

�α�i��
g�1 � s�Γ �1

2
�

s

2

π� �1�s�

2 x
�

s
2 ds �

m

=
υ�1

Rυ

�

1

2πi
E �α�1�i�

�α�i��

�

=
n�1

bn

n1�s
Γ �1

2
�

s

2

 �πx	�

�1�s�

2
x
�

1
2 ds � P�x�

�

1Ó
x

�

=
n�1

bn
2πi

E �α�1�i�

�α�i��
Γ �1

2
�

s

2

 �πn2

x ��
�1�s�

2

ds � P�x�.
(5)

Using again the Mellin Transform, in almost an identical way this last integral
can be written as:

1

2πi
E �α�1�i�

�α�i��
Γ �1

2
�

s

2

 �πn2

x ��
�1�s�

2

ds � 2e
�

πn
2

x .

Therefore:

ϕ�x� � 2Ó
x

�

=
n�1

bne
�

πn
2

x � P�x�
Hence, using equation 4, we have:

�

=
n�1

ane
�πn

2
x
�

1Ó
x

�

=
n�1

bne
�

πn
2

x �
P�x�
2

.

Multiplying both sides by e
�πt

2
x
with t % 0 and integrating over �0,�� in

dx we obtain:
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�

=
n�1

an E
�

0
e
�πx�t2�n2�

dx �
�

=
n�1

bn E
�

0

e
�π�n

2

x
�t

2
x


Ó
x

dx � E �

0
e
�πt

2
xP�x�

2
dx

�

�

=
n�1

an

π�t2 � n2� �
�

=
n�1

bn E
�

0

e
�π�n

2

x
�t

2
x


Ó
x

dx � E �

0
e
�πt

2
xP�x�

2
dx.

For the second integral change variable to u �
Ó
x to obtain:

E �

0

e
�π�n

2

x
�t

2
x


Ó
x

dx � E �

0

e
�π�n

2

u2 �t
2
u
2


u 2udu � 2E �

0
e
�π�n

2

u2 �t
2
u
2

du.

Change again variable, this time to v � tu:

2E �

0
e
�π�n

2

u2 �t
2
u
2

du � 2E �

0
e
�π� t

2
n
2

v2 �v
2
 dv

t
�

2
t
E �

0
e
�π� t

2
n
2

v2 �v
2

dv �

2
t
�
1

2
e
�2πnt

.

Therefore:

�

=
n�1

an

π�t2 � n2� �
�

=
n�1

bn
t
e
�2πnt

� E �

0
e
�πt

2
xP�x�

2
dx.

Notice that the last term is a sum of terms of the form

E �

0
e
�πt

2
x
x
a
log

b
xdx

where b are integers and Re�a� % �1, that is to say, it is a sum of terms of the

form t
α
log

β
t, we will denote this sum H�t�.

Hence:
�

=
n�1

an

π�t2 � n2� �
�

=
n�1

bn
t
e
�2πnt

�
H�t�
2

�

�

=
n�1

an

π�t2 � n2� � H�t�
2

�

�

=
n�1

bn
t
e
�2πnt

�

�

=
n�1

an
2πt

� 1

t � in
�

1

t � in

 � H�t�

2
�

�

=
n�1

bn
t
e
�2πnt

�

�

=
n�1

an � 1

t � in
�

1

t � in

 � πtH�t� � 2π

�

=
n�1

bne
�2πnt

.

In conclusion, the series on the left is a meromorphic function, with poles
only at �in, but the function on the right is periodic with period i, hence so is
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the function on the left (due to analytic continuation).
This implies that the residues at ki and �k � 1�i are equal, but this are exactly
ak and ak�1, so ak � a1 for all k. We have therefore proven that:

f�s� � �

=
n�1

an
ns � a1

�

=
n�1

1

ns � a1ζ�s�.
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