
In 1859, Bernhard Riemann published the article titled "Ueber die Anzahl der
Primzahlen unter einer gegebenen Grösse," [4] which translates to "On the Num-
ber of Prime Numbers less than a Given Quantity" [3]. This work laid the
foundation for centuries of future research.

In the following years, many mathematicians have studied this function. In
today's lesson, we dive deeply into the proof of one of the most important results
regarding the Riemann Zeta:

Theorem 1. If Re�s� � 1 then ζ�s� j 0.

notice that this, using the re�ection formula for the Riemann Zeta function,
also implies that ζ�s� j 0 if Re�s� � 0 and therefore that:

Theorem 2. The nontrivial zeros of the Riemann zeta function are contained
in the strip 0 $ Re�s� $ 1.

This theorem was proven independently by J.Hadamard and C.J. de La Val-
lée Poussin in 1896; this analysis concerns the former. This proof is also explored
in [1] and [5].

Hadamard's proof appeared in the article "Sur la distribution des zéros de
la fonction ζ�s� et ses conséquences arithmétiques" published in the "Bulletin
de la Société mathématique de France" [2]; it can be divided in three claims:

Claim 1.

S ��=
p

1

pσ
(1)

grows inde�nitely like � log�σ � 1� for σ " R, σ % 1, σ � 1.

Claim 2. For s � σ � it " C and σ % 1, σ � 1:

Re�log�ζ�σ � it��� �=
p

1

pσ
cos �t log p�

also if there exists t0 " R such that ζ�1 � it0� � 0 then

Re�log�ζ�σ � it0��� �=
p

1

pσ
cos �t0 log p� � ��
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Claim 3.

P ��=
p

1

pσ
cos �t0 log p� (2)

does not diverge when σ " R, σ % 1, σ � 1 for any t0 " R.

Remark 1. It is interesting to think what would mean for <p
1
pσ cos �t0 log p�

to diverge (say to ��); it would imply that cos�t0 log p� is nearly �1 for the
overwhelming majority of the primes p. That would be an incredible regularity
in the distribution of the numbers log p, namely, that most of them lie near the
points of the arithmetic progression �2n � 1�t�10 π.
While convenient, this is unfortunately false.

The bulk of the proof is demonstrating the second part of Claim 2 and then
proving that supposing that the sum P diverges gives us a contradiction i.e.
Claim 3, which consequentially implies that ζ�1 � it0� j 0 for any t0 " R.

Remark 2. Before we start, notice that the notation used by Hadamard in his
original paper can be found a bit confusing, he �rst writes s for a real variable
(while often in literature it refers to a complex one) and then uses the same s
for the real part of a complex variable s � it; in an attempt to reduce confusion
we opt to use the classical notation s � σ � it, where s is a complex variable,
Re�s� � σ " R and Im�s� � t " R.

Most of the proof presented is a more detailed version of the ones o�ered in
[1] and [5].

Proof. The article starts with an unusual de�nition of ζ�s�:
De�nition 1. The function ζ�s� is de�ned, for Re�s� % 1 as:

log ζ�s� � �=
p

log �1 � 1

ps

 (3)

where the sum is considered over all prime numbers p.
This is not the original de�nition but equivalent to it as it can simply be observed
by using the Euler product of the Riemann Zeta function:

ζ�s� �5
p

�1 � 1

ps

�1 (4)

which implies

log�ζ�s�� � log �5
p

�1 � 1

ps

�1� �=

p

log ��1 � 1

ps

�1� � �=

p

log �1 � 1

ps


(5)

1 Claim 1

Hadamard proceeds by enunciating Claim 1, without giving a detailed proof.
We instead take some time to explain this result clearly:
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First notice that, using de�nition 3 and the Taylor expansion for log�1� x�
we have:

log ζ�σ� � �=
p

log �1 � 1

pσ

 � �=

p

log �1 � �� 1

pσ




� �=
p

�

=
m�1

��1�m�1
�� 1

pσ 	m
m �=

p

�

=
m�1

��1�m�2��1�m 1

mpmσ

�=
p

�

=
m�1

1

mpmσ �=
p

1

pσ
�=

p

�

=
m�2

1

mpmσ �=
p

1

pσ
� f�σ�,

(6)

with f�σ� regular and bounded for σ ' 1.

Remark 3. It's important to note that the relation log ζ�s� � <p<
�

m�1
1

mpms

comes up very often when studying the Riemann zeta function.

Remember that Riemann de�ned the ξ function as:

ξ�t� �� Γ �s
2
� 1	 �s � 1�π� s

2 ζ�s� (7)

therefore:

lim
s�1

�s � 1�ζ�s� � ξ�1�π 1
2

Γ � 3
2
� �

1
2
π

1
2

1
2
π

1
2

� 1

i.e. ζ�s� has a simple pole at s � 1.

Hence, as σ � 1 for decreasing values:

lim
σ�1

log�ζ�σ��σ � 1�� � lim
σ�1

�log ζ�σ� � log�σ � 1�� � log�1� � 0

�

lim
σ�1

�=
p

1

pσ
� f�σ� � log�σ � 1�� � 0

and therefore, for σ slightly larger than one:

log ζ�σ� � S � � log �σ � 1� (8)

which is exactly Claim 1.

2 Claim 2

The author proceeds to a�rm that Claim 2 is true, this is once again not shown
in the article, but we take the time to prove it properly:
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First the fact that Re�log ζ�σ � it�� is approximately P:

Re�log ζ�s�� � Re�log ζ�σ � it�� � Re�=
p

1

pσ�it
� f�σ � it��

� Re�=
p

1

e�σ�it� log p
� �Re�f�σ � it��

� Re�=
p

e
�it log p

pσ
� �Re�f�σ � it��

�=
p

1

pσ
�� cos�t log p�� �Re�f�σ � it��

�=
p

1

pσ
cos�t log p� �Re�f�σ � it�� � P �Re�f�σ � it��.

(9)

Re�f�σ � it�� is once again bounded for σ ' 1 and therefore the behavior of
Re�log ζ�s�� is the same as P when σ � 1.

Now, to prove the second claim, notice that 9 also implies that:

P �Re�f�s�� �Re�log�ζ�s��� � 0

�

lim
σ�1

�=
p

1

pσ
cos �t0 log p� �Re�f�σ�� �Re�log�σ � 1��� � 0

but Re�f�σ�� is bounded and therefore:

P �=
p

1

pσ
cos �t0 log p� � log�σ � 1� � ��. (10)

So we have proven that P grows inde�nitely like log�σ � 1� i.e. like �S when σ
tends to 1, which combined with the �rst part of the claim, implies that:

Re�log ζ�σ � it�� can approach �� as σ � 1 if and only if P � ��.

That is to say that if we were to �nd a zero of ζ�s� in the form 1 � it then
it would follow that:

lim
σ�1

P � ��. (11)

3 Claim 3

Claim 3 is the one that is thoroughly proven by Hadamard, to understand his
reasoning notice �rst that, by de�nition:

P & S

and therefore, 11 and 8 imply that, for any positive number ϵ we can �nd a σ,
with σ � 1 close enough to zero, such that:

P $ ��1 � ϵ�S (12)
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this is never explicitly written in the paper, but it is a crucial part of the con-
tradiction that Hadamard eventually �nds.

Finding the contradiction is done as follows:
Consider α a small angle (nothing is speci�ed about α, it is not wrong, but for
the sake of clarity, we suppose 0 $ α $ π

4
).

Distinguish two categories of prime numbers:
The prime numbers that satisfy

�2k � 1�π � α
t0

& log p &
�2k � 1�π � α

t0
(13)

for some integer k and the prime numbers that don't for any integer k.
Call Sn and Pn the partial sums of the series S and P (i.e. the sums of the �rst
n primes rather than the sum on all primes) and separate them as:

Sn � S ¬n � S ¬¬n

Pn � P ¬

n � P ¬¬

n

where S ¬n and P ¬

n are only summed over the prime numbers belonging to the �rst
category while S ¬¬n and P ¬¬

n are only summed over the prime numbers belonging
to the second category.
Denote with ρn the fraction:

ρn ��
S ¬n
Sn

(14)

and notice that 0 $ ρn $ 1, being a limited succession, we can extract a sub-
succession that converges, consider that our succession ρn.

Hadamard claims that if there exists a complex number 1 � it0 such that
ζ�1 � it0� � 0 then this succession has to tend to 1 as σ � 1.

That is to say that, under the hypothesis that ζ�1� it0� � 0, for any number
ρ $ 1 and for any σ bigger than 1 but su�ciently close to 1, we should be able
to �nd an n such that ρn0

% ρ for all n0 % n (notice that in the original pa-
per the author refers to this �xed complex number as 1�ti rather than 1� it0).

Let's understand why this is true:
Suppose that it isn't, meaning that ζ�1 � it0� � 0 for some complex number
1 � it0 but there is a number ρ $ 1 such that

ρn & ρ (15)

for all n bigger than a �xed n0.

It is obvious that:
1

ps
cos �t0 log p� ' � 1

ps

and therefore, by de�nition:

P ¬

n ' �S
¬

n � �ρnSn (16)
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while
� cos�α� % cos�t0 log p�

�

cos�π � α� % cos�t0 log p�
but 0 $ α $ π

4
, therefore:

cos�π � α� % cos�t0 log p� ¿ 0 & �2k � 1�π � α $ t0 log p & �2k � 1�π � α

for some integer k, that implies:

�2k � 1�π � α
t0

& log p &
�2k � 1�π � α

t0

which would make p belong to the �rst category of primes.
We have proven that:

� cos�α� % cos�t0 log p� ¿ p belongs to the �rst category of primes (17)

and therefore:

cos�t0 log p� ' � cos�α� ¿ p belongs to the second category. (18)

Hence

P ¬¬

n ' �S
¬¬

n cos�α� � ��Sn � S ¬n� cos�α� � ��1 � ρn�Sn cos�α�. (19)

now, notice that, if 15 is true then, given that cos�α� $ 1:

ρn�1 � cos�α�� & ρ�1 � cos�α��
�

ρn�1 � cos�α�� � cos�α� & ρ�1 � cos�α�� � cos�α�
�

ρn � �1 � ρn� cos�α� & ρ � �1 � ρ� cos�α�
�

��ρn � �1 � ρn� cos�α�� ' ��ρ � �1 � ρ� cos�α��
and therefore, using 16 and 19:

Pn � P ¬

n � P ¬¬

n ' �ρnSn � �1 � ρn�Sn cos�α�
� ��ρn � �1 � ρn� cos�α��Sn ' ��ρ � �1 � ρ� cos�α��Sn � �θSn

(20)

where θ � �ρ��1�ρ� cos�α�� & 1, this was supposed true for an in�nite number
of values of n, therefore we can consider the limit for n�� in 20 and write:

P ' �θS (21)
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which is in contradiction with 12 and therefore in contradiction with the hy-
pothesis that ζ�1 � it0� � 0.

We have therefore proven that the equality ζ�1 � it0� � 0 implies that the
limit of ρn tends to 1 with s, consider this true then, and see how we obtain a
contradiction:

Consider the series 2 for 2t0 rather than t0 and call Q this new series.
Divide it as: Qn � Q¬

n �Q¬¬

n in the same way we divided the series Pn.
Similarly to how we obtained equations 16 and 19 we �nd that, if p belongs to
the �rst category of primes then:

�2k � 1�π � α
t0

& log p &
�2k � 1�π � α

t0

�

�2k � 1�π � α & t0 log p & �2k � 1�π � α

�

�2k � 1�2π � 2α & 2t0 log p & �2k � 1�2π � 2α

�

cos�2t0 log p� ' cos�2α�
hence

Q¬

n ' S ¬n cos�2α� � ρnSn cos�2α� (22)

while, simply using that cos�2t0 log p� ' �1:
Q¬¬

n ' �S
¬¬

n � ��Sn � S ¬n� � ��1 � ρn�Sn. (23)

and therefore

Qn � Q¬

n �Q¬¬

n ' Sn �ρn cos�2α� � �1 � ρn�� (24)

so that we have:
Qn ' θ

¬Sn, (25)

where θ
¬

denotes the number ρn cos�2α���1�ρn� that is positive if we consider
1

1�cos�2α�
$ ρn & 1 (this is not a problem since ρn � 1).

We have S �� and therefore Q �� for σ � 1, but remember that Q is
approximately Re�log ζ�σ � i2t0��, so this would mean that 1 � i2t0 is a pole
for the Riemann Zeta function, that we know is false.
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