POSITIVE
INCREMENT

Definition 1. The Riemann Zeta function is defined as

()= ) = (1)

n=1
for Re(s) > 1.

Theorem 1.
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for 0 < Re(s) < 1, here ¥(x) : d% [InT(z)] = 11:’((;?)) is the Digamma function.

This formula was first proven by De Brujin in [1]. What follows is a trans-
lation of the article to which we added a few details necessary for an easier
understanding. We will use the common notation Re(s) = o.

Proof. Let’s start by proving that, for any k # 0:

1 sin(7s) Jw dx

Estl T ws o x°(k+x)?

First, changing variable to x = kt:
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defined as

is a special case of the so called "Beta function"
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Remark 1. At the moment of writing Positive Increment does not contain a
lesson regarding the Beta Function, we apologize, and we are trying to compen-
sate as soon as possible.
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In our case:
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in the last equality we used the known property of the Gamma function:
D(s)I'(1 —s) = —~
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We have therefore proven that:
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Now simply differentiate both sides with respect to k to obtain 2:
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here we used Leibniz’s Integral rule to differentiate under the integral sign.

Equation 2 is true for any k # 0, consider those for k an integer from k = 1
to k = n and sum them to obtain:
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The derivative of the Digamma function is:
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therefore:
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Remember now that, by definition, ((1 + s) = lim,c0 9 ey ks%, so that

equation 4 implies, for 0 < o < 1:
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here the exchange of limit and integral is justified using Lebesgue’s dominated
convergence theorem with the fact that: | Y }_; ﬁ| < |¢'(1 + ). O

(6)




Corollary 1.
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for0 < Re(s) <1 and~ :=1lim,,_ (1 + % + e+ % - ln(n)) is Euler’s constant.
Proof. This formula is obtained using integration by parts, being careful to

choose a specific primitive of 1'(1 + z):
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as it is a known property of the Digamma function that (1) = —7.
This choice is necessary to make sure that the term outside the integral is null.
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the term outside the integral is zero, due to the fact that (1) = —v and
0<o<1.
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