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where Re�s� % �2k, N, k � 1, 2,�, Bn�x� are the Bernoulli polynomials,

Bn�x� �� Bn�x � �x�� are the Bernoulli periodic functions while the function�x� �� maxrk " Z � k & xx, is known as "�oor" of x or integer part of x.

Proof. Start by considering the equation
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this is known as Representation by Euler-Maclaurin-formula.

By adding and subtracting 1
2
to x��x� we obtain the �rst Bernoulli periodic

function B1�x� � x � �x� � 1
2
:
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where we used that � s
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To obtain the result we will use the following properties of the Bernoulli
Polynomials:
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Where Bn is the n � th Bernoulli number, proofs can be found in [1].

We proceed now using integration by parts, remembering that by equation
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Polynomial has degree k, also by de�nition of Bk�x�:
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so exactly our formula for k � 1.

The general formula is obtained by integrating by parts k times.
Notice �rst that B2k�1 � 0, therefore the �rst term of the integration by parts
is zero when we iterate for an even number of times, this explains why the �rst
sum of the general formula only contains even indexes.

Summing up, under the hypothesis that Re�s� % �2k, the term outside the
integral after the k�th iteration will be:
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while the integral part will always be multiplied by factor s�k
k

that times the
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Corollary 1.
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where Re�s� % �2k, k � 1, 2,�.

Proof. To obtain this we only need to consider N � 1 in Theorem 1:
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