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Definition 1. The Riemann Zeta function is defined as

for Re(s) > 1.

Theorem 1.
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for Re(s) >0, N =1,2,+-+ and [x] := max{k € Z : k < x}, this is known as
"floor" of x or integer part of x.

Proof. We take inspiration from [1], in this book the author proves that
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where ((s,a) := Y . L__ is called the Hurwitz zeta function, it is obvious
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that ¢(s) = ((s,1) so that equation 3 implies equation 2, we will rewrite the
proof for the case a = 1.

Start by applying Euler’s summation formula:
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true for any function f with continuous derivative f' on the interval [y, 2] and
0 < y < z, proof of this can also be found in Apostol’s book [1], Theorem 3.1.

Apply this to the function f(t) = (¢t + 1) ° and z,y € Z., so that the function
is continuous and with continuous derivative in [y,z] and x — [z] =y - [y] =0
by definition of [z].



We obtain
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set y = N and z — oo with Re(s) > 1
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Now, by definition of the zeta function: ¢(s) = ¥, —— + > N+ (n;s so:
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the first integral is easily solvable:
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Now simply call x =t + 1 to obtain:
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Which proves the theorem for Re(s) >1, N =1,2,---

If Re(s) = 6 > 0 the integral is dominated by L(\),o Wdt so that we have

uniform convergence for Re(s) > 0. O

Corollary 1.
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where By(z) = z - [z] - % is the first "Bernoulli periodic function” (B, (z) :=
B,(z - [z]))-



Proof. Simply fix N =1 in Theorem 1 to obtain:
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now add and subtract % to x — [x]
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