
De�nition 1. The Riemann Zeta function is de�ned as
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for Re�s� % 1.

Theorem 1. The Riemann Zeta function satis�es the equation:
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for Re�s� % 1. Here Λ�n� is the Von Mangoldt Function, de�ned for n " N as:

Λ�n� � wlog p if n � p
k
for some prime p and integer k ' 1,

0 otherwise.
(3)

Proof. At the core of this proof there's the Euler product for the Riemann Zeta
Function:
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the product runs over all prime numbers p and Re�s� % 1, proof of this formula
can be found on our site.

Equation 4 implies that:
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where again the product is over all prime numbers p and Re�s� % 1.
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https://positiveincrement.com/eulers-product-formula


Given that ·p�s· $ 1 for Re�s� % 1, we are allowed to use the Taylor expan-
sion for the logarithmic function:
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(6)

Call now n � p
k
for any p prime number and k integer with k ' 1, then

k � logp�n� and we obtain:
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where we used the known property of logarithms, loga�b� � logc�b�

logc�a�
and therefore

logp�n� � log�p�

log�n�
.

Now it is simply a matter of noticing that, by de�nition:
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