
De�nition 1. The Riemann Zeta function is de�ned as
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for Re�s� % 1.

Theorem 1.
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for Re�s� % �2n and n � 1, 2, 3,�; here Bn is the n-th Bernoulli number.

Remark 1. The fraction
Γ�s�n�

Γ�s�
is sometimes abbreviated using the Pochhamer's

symbol or shifted factorial �s�n.
Proof. Start by considering the formula
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true for Re�s� % 1, proof of this equation can be found on our site.
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in the integral to obtain:
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remembering the de�nition of the Gamma function:
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we �nd that:
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Therefore
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Finally, recognizing that
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as x� 0 the region of convergence is also demonstrated.
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