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Remember now that, for Re�s� % 0:
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proof of this equation can be found on our site.
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Start by remembering that for ¶x¶ $ 1 we have:
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In our case we have:
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for x % 0.

Now �x C % 0 and de�ne:
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Consider that
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we are allowed to switch the order of integration and summation using absolute
convergence.

For x " �C,�� we have ¶e�x¶ $ 1 and therefore we can use 6 to obtain:
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Using now the de�nition of In,C :
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where we are allowed to exchange the order of limit and sum using absolute
convergence.
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