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Definition 1. The Riemann Zeta function is defined as
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for Re(s) > 1.
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for Re(s) > 0.

Proof. Define:
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using the fact that the Gamma function is defined as I'(s) = Ioo =" e Vdy
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we have, changing variable to y = (n + 1)x:
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Remember now that, for Re(s) > 0:
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proof of this equation can be found on our site.


https://positiveincrement.com/eta-function-formula

Therefore:
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so that all that is left to prove is that:
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Start by remembering that for |z| < 1 we have:
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In our case we have:
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and |e”"| < 1 for z > 0, therefore using 5:
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for x > 0.

Now fix C' > 0 and define:
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it is obvious that: limc_ I,, ¢ = I,,.



Consider that
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we are allowed to switch the order of integration and summation using absolute
convergence.

For x € [C, 0] we have |e””| < 1 and therefore we can use 6 to obtain:

el oo 1 ( n 00 xs—l
_ _ n s— —(n+l)x =
7;)%’0 = JC ;( 1)z e dx L} pear 1dx.
Using now the definition of I, ¢:
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where we are allowed to exchange the order of limit and sum using absolute
convergence. O



