= POSITIVE
INCREMENT

Definition 1. The Riemann Zeta function is defined as
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for Re(s) > 1.
Theorem 1. o
) =g |, e @

where I'(s) := _[Ooo 2* 'e ™ dx is the Gamma function and Re(s) > 1.

This is a standard result that can be found in almost any book discussing the
Riemann Zeta function ([1],[3], or[2] for example).
The proof we discuss here is a more detailed version of the one contained in [3].

Proof. Start by noticing that, for Re(s) > 0:
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now by definition
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hence
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See now that, for Re(s) > 1, the integral:



converges, we can therefore switch the order of summation and integration in
equation 3 by absolute convergence, so that:
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where we used the fact that
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