
De�nition 1. The Riemann Zeta function is de�ned as
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This is a standard result that can be found in almost any book discussing the
Riemann Zeta function ([1],[3], or[2] for example).
The proof we discuss here is a more detailed version of the one contained in [3].

Proof. Start by noticing that, for Re�s� % 0:
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See now that, for Re�s� % 1, the integral:
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converges, we can therefore switch the order of summation and integration in
equation 3 by absolute convergence, so that:
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where we used the fact that
»»»»» 1
ex
»»»»» $ 1 and that <�n�0 qn � 1

1�q
for ¶q¶ $ 1.
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