
De�nition 1. The Riemann Zeta function is de�ned as
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Theorem 1. The Laurent expansion for ζ�s� around the pole at s � 1 is:
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where γk are called Stieltjes constants and are de�ned via
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Proof. We will use the following equation for the Zeta function:

ζ�s� � N

=
n�1

1

ns �
N

1�s

s � 1
� sE �

N

x � �x�
xs�1

dx (3)

true for Re�s� % 0, N � 1, 2,� and �x� �� maxrk " Z � k & xx, known as
"�oor" of x or integer part of x this is sometimes known as Representation by
Euler-Maclaurin Formula.
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Write n
1�s

and N
1�s

in the exponential form and substitute with their power
series about s � 1:
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By using 4 in 3 we �nd
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Given this is true ¾N " N it will remain true for N ��, therefore:

ζ�s� � lim
N��

1

s � 1
�

�

=
k�0

�1 � s�k
k!

� N

=
n�1

log�n�k
n �

log�N�k�1
k � 1

� � sE �

N

x � �x�
xs�1

dx

�
1

s � 1
�

�

=
k�0

�1 � s�k
k!

� lim
N��

� N

=
n�1

log�n�k
n �

log�N�k�1
k � 1

��
�

1

s � 1
�

�

=
k�0

�1 � s�k
k!

γk �
1

s � 1
�

�

=
k�0

��1�k
k!

γk�s � 1�k
(6)

where we used the fact that ¶ D�
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