
De�nition 1. The Riemann Zeta function is de�ned as
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for Re�s� % 1.

Theorem 1.
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for Re�s� % 1, k � 1, 2, 3,�.

Proof. Applying repeatedly the fact that the sum function of a Dirichlet Series
(like the Riemann Zeta function) is analytic in its half-plane of convergence
(Re�s� % 1 for ζ�s�) and can be obtained by di�erentiating term by term (see
[1] theorem 11.12, or also our proof for the �rst derivative), one �nds
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and so forth.
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