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Definition 1. The Riemann Zeta function is defined as
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for Re(s) > 1.

Theorem 1.
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where v is Euler’s constant defined as vy := lim,,_, o0 (1 + % + % + e+ % - ln(n))
and the product is over all roots p of ¢ with Re(p) > 0.

The demonstration is a more detailed version of the one seen in [1].

Proof. The main ingredient of this proof is Hadamard’s factorization Theorem.

It states that, an entire function f of order N can be written in the canonical
Hadamard’s Representation:

f(s) = U ﬁEp (%)
n=1

Here E,(s) are the Hadamard canonical Factors defined as:

E,(s):=(1-s) l_[esT

a, are the roots of f that are not zero (a, # 0), m is the order of the zero of
f at z = 0 (where if f(0) # 0 we have m = 0), Q is a polynomial of a certain
degree ¢ and p is the smallest non-negative integer such that the series
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converges.

The value g defined as g := max{p, ¢} is called genus of the function f, note
that p = 1 hence g = 1, it is also true that g < N < g + 1 therefore if N is an
integer either g= N —1 or g = N.

We will proceed by applying this theorem to the Riemann £ function.

Remark 1. For those unfamiliar with this function we recommend our Lesson
regarding Riemann’s breaktrough article and our Proof of its reflection formula.

To apply the Theorem, first we need to prove that this is an entire function
of order N = 1; remember that the £ function is defined as:

£(5) 5= 335 = 1T (35756

therefore the problems with regularity can only be the ones coming from the
factors ¢(s) and T’ (%s) Start from the case Re(s) > 0:

The T function converges absolutely for Re(s) > 0; you can find rigorous
proof of this statement on our site.

The (¢ function can be extended to the whole plane in many different ways,
(see for example its First Functional Equation) finding that the only singularity
is a simple pole at s = 1. On the other hand, in the definition of £ we have
(s — 1)¢(s) which is regular even in s = 1.

Therefore £(s) is regular Vs € C| Re(s) > 0.

Since £(s) satisfies the equation:

(s) =€(1-9) (see Remark 1) (3)
it is also regular Vs € C|Re(s) < 1, hence is an integral function.

Remember now that the order of an entire function f(-) is defined as:

N = inf{a > 0] f(s) € O(e'Z"’)}.

Once again to prove that the order of £ is 1 we will focus on the I and (
factors that appear in the definition:

Firstly:
1
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While, for the ¢ function, remember that it satisfies the equation:
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sometimes referred to as Representation by Euler-Maclaurin Formula.

For Re(s) = = and |s— 1| > A, we find:

%
o) =01sl [~ d—) +0(1) = 0((s))

and therefore

£(s) = O(eA|S|1n(|S|))

for Re(s) = % and |s| > A; using the reflection formula 3 we find that this holds
also for Re(s) < %

Hence by definition £(s) is of order at most 1; the order is exactly 1 since as
s — 00 by real values we have In(((s)) = 27° = In(&(s)) = %sln(s).

We have therefore proven that ¢ is an entire function of order NV = 1, let’s
apply now Hadamard’s factorization Theorem:

N =1 implies either ¢ = 1 or ¢ = 0, but by definition ¢ = max{p, ¢} and
p=1,s0 g =1 and therefore p = 1 and:

s 5\ =
£(5)=(1-5)¢
£(s) = smeQ(S) 1_[ (1 _ %) 6%.
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We know that £(0) = £ and therefore m = 0 and we have:
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so that:

We also know that the degree ¢ of @ is at most 1, i.e. Q(s) = b,s + ¢ where
by and c are two constants, using again the fact that £(0) = % we find that:
1
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£(s) = %ebosl_[(l—%)ep (5)
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Some extra work is now necessary to determine by:

Remember the definition of £(s):

£06) 1= 335 = (5] 7 7¢(s)
!
((s) = 2ot

s(s— 1)I‘(%s)

combining this with equation 5 we have:
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where we defined b as b := by + 2 In(r) and used that 2sT'(Ls) =T (1s+1).
To calculate b notice that, using the equation to find C'(s), we have:
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(this calculation is credited to [1]).

Considering the limit as s — 0, this implies:
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since Q) - = In(27) and I'(1) = —~ it follows that b = In(27) — 1 — 1 and

¢(0)
therefore using 6:
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