
De�nition 1. The Riemann Zeta function is de�ned as
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Theorem 1.
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where γ is Euler's constant de�ned as γ �� limn�� �1 � 1
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and the product is over all roots ρ of ζ with Re�ρ� % 0.

The demonstration is a more detailed version of the one seen in [1].

Proof. The main ingredient of this proof is Hadamard's factorization Theorem.

It states that, an entire function f of order N can be written in the canonical
Hadamard's Representation:
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Here Ep�s� are the Hadamard canonical Factors de�ned as:
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an are the roots of f that are not zero (an j 0), m is the order of the zero of
f at z � 0 (where if f�0� j 0 we have m � 0), Q is a polynomial of a certain
degree q and p is the smallest non-negative integer such that the series
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converges.

The value g de�ned as g �� maxrp, qx is called genus of the function f , note
that p ' 1 hence g ' 1, it is also true that g & N & g � 1 therefore if N is an
integer either g � N � 1 or g � N .

We will proceed by applying this theorem to the Riemann ξ function.

Remark 1. For those unfamiliar with this function we recommend our Lesson

regarding Riemann's breaktrough article and our Proof of its re�ection formula.

To apply the Theorem, �rst we need to prove that this is an entire function
of order N � 1; remember that the ξ function is de�ned as:
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therefore the problems with regularity can only be the ones coming from the

factors ζ�s� and Γ � 1
2
s�. Start from the case Re�s� % 0:

The Γ function converges absolutely for Re�s� % 0; you can �nd rigorous
proof of this statement on our site.

The ζ function can be extended to the whole plane in many di�erent ways,
(see for example its First Functional Equation) �nding that the only singularity
is a simple pole at s � 1. On the other hand, in the de�nition of ξ we have
�s � 1�ζ�s� which is regular even in s � 1.

Therefore ξ�s� is regular ¾s " C¶ Re�s� % 0.

Since ξ�s� satis�es the equation:

ξ�s� � ξ�1 � s� (see Remark 1) (3)

it is also regular ¾s " C¶Re�s� $ 1, hence is an integral function.

Remember now that the order of an entire function f��� is de�ned as:

N �� inf uα % 0¶ f�s� " O�e¶z¶α�{ .
Once again to prove that the order of ξ is 1 we will focus on the Γ and ζ

factors that appear in the de�nition:

Firstly:
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While, for the ζ function, remember that it satis�es the equation:
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sometimes referred to as Representation by Euler-Maclaurin Formula.

For Re�s� ' 1
2
and ¶s � 1¶ % A, we �nd:
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and therefore

ξ�s� � O�eA¶s¶ ln�¶s¶��
for Re�s� ' 1
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and ¶s¶ % A; using the re�ection formula 3 we �nd that this holds

also for Re�s� & 1
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Hence by de�nition ξ�s� is of order at most 1; the order is exactly 1 since as
s�� by real values we have ln�ζ�s�� � 2
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We have therefore proven that ξ is an entire function of order N � 1, let's
apply now Hadamard's factorization Theorem:

N � 1 implies either g � 1 or g � 0, but by de�nition g � maxrp, qx and
p ' 1, so g � 1 and therefore p � 1 and:
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We know that ξ�0� � 1
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We also know that the degree q of Q is at most 1, i.e. Q�s� � bos� c where
b0 and c are two constants, using again the fact that ξ�0� � 1
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Some extra work is now necessary to determine b0:

Remember the de�nition of ξ�s�:
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combining this with equation 5 we have:
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where we de�ned b as b �� b0 �
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To calculate b notice that, using the equation to �nd ζ
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(this calculation is credited to [1]).

Considering the limit as s� 0, this implies:
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