
De�nition 1. The Riemann Zeta function is de�ned as
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for Re�s� % 1.

Theorem 1.
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for 0 $ Re�s� $ 1 and m � 1, 2, 3,�.

Where ψ�x� �� d
dx

ln Γ�x� �
Γ

¬
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Γ�x�
is the Digamma function and ψ

�m�
�x� indi-

cates the m�th derivative of the Digamma function.

Proof. This proof comes mainly from [1], our job here is just to translate and
add some details to make it clearer, we will use the common notation σ � Re�s�.

Let's start by proving that:

1

ks�m
�

Γ�m � 1�

Γ�s �m�Γ�1 � s�
E �

0

dx

xs�k � x�m�1
(3)

for m ' 0.

Remark 1. In his article [1] de Bruijn commits an innocuous mistake in enun-
ciating this formula. We give here a correct version with a rigorous proof. This
is necessary to obtain the result of Theorem 2.

We will demonstrate this using induction. First notice that, changing vari-
able to tk � x:
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Recognize the integral D�
0

dt
ts�t�1�

as a special case of the so called "Beta func-

tion", de�ned as:
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We have proven equation 3 for m � 0:
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Now simply di�erentiate both sides with respect to k to obtain 3 for m � 1:
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Where we used Leibniz's Integral rule to di�erentiate under the integral sign
and the known property of the Γ function: sΓ�s� � Γ�s � 1�.

We have therefore proven that the formula is true for m � 1, assuming it
true for m let's prove it now for m � 1, simply by di�erentiating again:
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Where we used the exact same results as before. This proves 3.

Remember now the expression for the derivatives of the Digamma function (also
know as polygamma functions):
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Proceed now to sum each side of equation 3:
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Therefore, using the fact that, by de�nition, ζ�m � s� � limn��<n
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going back to 5 we have, for 0 $ σ $ 1:
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Where we can justify the exchange of limit and integral using Lebesgue's dom-
inated convergence theorem because
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To obtain formula 2, utilize the Relation to the Sine Function:
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and the basic property of the Gamma Function s! � Γ�s � 1�:
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https://positiveincrement.com/relation-to-the-sine-function
https://positiveincrement.com/definition-of-the-gamma-function
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