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Definition 1. The Riemann Zeta function is defined as

()= Y = W

n=1
for Re(s) > 1.

Theorem 1. The Riemann zeta function satisfies the equation

(s) = 2(27r)s_1sin(gs)F(1 —$)C(1—s) 2)
for s #0,1.

This is a classical result that can be found in many textbooks, the one that
follows is an explanation of the proof that can be found in [1].

Proof. We start by proving the following formula for the I" function:

JOO £ sin(t)dt = F(s)sin(gs). (3)
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we can simplify the first integral, using that:
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here we are writing (—1)" as cos(nr).
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Proceed by applying the so called Ramanujan’s Master Theorem, it states
that, if a complex valued function f(¢) as an expansion of the form:

then

In our case, where f(t) = ¢’ and ¢(n) = i" cos(nn), it implies that:
J " ledt = T(s)i * cos(=sm) = T(s)i * cos(sm).
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Using now that cos(t) = ¢ 5 ~ and that In(i) = i% we find:
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Therefore we have:
e dt = F(s)ewg.
0
A similar reasoning can be applied to the second integral in equation 4:
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Concluding, equation 4 can be written as:
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To prove 2 we start by considering the equation:

¢(s) =5Joo de (11)
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true for —1 < Re(s) < 0, this particular analytical continuation is explained in

detail on our site.

It is a known fact that the Fourier series for [z] — = + % is:

1 & sin(2nmx)
[2)-2+5=) —m

n=1

valid when z is not an integer, this is a result linked to the fact that [z] —x + %
is a Bernoulli periodic function.

Substituting in equation 11 we find:
o0 —_
[z] -z + 1 sin( 2n7rx sin(2nmz)
C(S) =S IO 1.5+1 I Z 5+1 T Z I 5+1 dz.
(12)

The integration term-by-term is justified as the series converges boundedly,
therefore, it is sufficient to prove that:
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for —1 < Re(s) < 0.

To do this, simply notice that, integrating by parts:
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and the desired result clearly follows.

Using the change of variables y = 2nmz, equation 12 becomes:
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https://positiveincrement.com/analytic-continuation-for-0res1

the last integral is exactly the one that appears in equation 3, therefore:

C(s) = 2(2n)°¢(1 = $)0(=s) sin (= 5s) = 2(20)°C(1 = $){=T(=s)} sin 5 5)
= 257r5_1§(1 - s){—sf(—s)}sin(%s) = 2(277)8_1 sin(gs) I'(1-5)¢(1-s)

(14)
in the last passage we used the fact that sI'(s) = I'(s + 1).

This proves 2 for —1 < Re(s) < 0, however the right-hand side is analytic for
all values of s such that Re(s) < 0 (due to the definitions of ¢ and I') so that it
provides the analytic continuation of ((s) over the remainder of the plane, this
also implies that there are no singularities other than the pole at s = 1. O
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