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Definition 1. The Riemann Zeta function is defined as
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for Re(s) > 1.

Theorem 1.
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for Re(s) > 0.
The series on the right is the so called "Dirichlet Eta function”:
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This is a classic result that can be found in many texts, we discuss a more
detailed version of the proof that appears in [1].

Proof. First assume that Re(s) > 1, then we have:
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Which proves the equation for Re(s) > 1.

If Re(s) > 0 the series on the right converges, (this is a corollary of a more
general result on Dirichlet Series, it’s explained in detail in "Introduction to
Analytic Number Theory" by Tom M. Apostol, page 232, Lemma 2 [1]) so by
analytic continuation, the equation also holds for Re(s) > 0. O



Corollary 1.
C(s)<0ifs€Rand0<s<1.
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Proof. When s € R the series Z:ozl (_;)S is an alternating series with a positive
sum (even better, in [2] one can find a proof that the function is monotonic for
s€R),if 0 <s<1then (1-2""") is negative hence ((s) is also negative. [
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