
De�nition 1. The Riemann Zeta function is de�ned as
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for Re�s� % 1.

Theorem 1.
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for Re�s� % 0.
The series on the right is the so called "Dirichlet Eta function":
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This is a classic result that can be found in many texts, we discuss a more
detailed version of the proof that appears in [1].

Proof. First assume that Re�s� % 1, then we have:
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Which proves the equation for Re�s� % 1.

If Re�s� % 0 the series on the right converges, (this is a corollary of a more
general result on Dirichlet Series, it's explained in detail in "Introduction to
Analytic Number Theory" by Tom M. Apostol, page 232, Lemma 2 [1]) so by
analytic continuation, the equation also holds for Re�s� % 0.
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Corollary 1.

ζ�s� $ 0 if s " R and 0 $ s $ 1.

Proof. When s " R the series<�n�1
��1�

n�1

ns is an alternating series with a positive
sum (even better, in [2] one can �nd a proof that the function is monotonic for

s " R), if 0 $ s $ 1 then �1 � 2
1�s

� is negative hence ζ�s� is also negative.
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