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Definition 1. The Riemann Zeta function is defined as
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for Re(s) > 1.

Theorem 1. The Riemann Zeta function satisfies the equation:
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For s #1,2,3,---.

Here the integration contour is C, a loop around the negative real axis; it starts
at —oo, encircles the origin once in the positive direction without enclosing any
of the points t = £2mi, +4mi, -+, and returns to —00.

t~* has its principal value where t crosses the positive real azis and is continuous.
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Figure 1: The Contour C

This is a result that is hard to find proven in detail, this is a more complete
version of the demonstration from [1].



Proof. Start by considering the formula for the Gamma function known as the
Hankel’s Loop Integral representation:
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which implies:
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the contour C is still the one in the picture above.

Fix v € C with Re(v) > 0 and substitute z = vt in the integral to obtain:
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note that, using Cauchy’s Theorem, having chosen v € C with Re(v) > 0, the
contour can be left unchanged.

Replacing s with 1 — s we have:
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substitute v with v + n, where n € N,¢, so that we still have Re(v +n) > 0:

. I(1- o
(v+n) "= uj ety
2w c

Fix now z € C with |z]| < 1.
Restrict the contour C' so that any ¢t € C satisfies |zet| < r < 1, where r is
the radius of the loop around the origin (see Figure 1), once again Cauchy’s
Theorem ensures that the result does not change. Multiply both sides by z":
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taking the sum from zero to infinity we have:
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we are allowed to move the summation under the integral sign because |zet| <
r <1

The series on the right hand side is of the geometric kind and |ze’| < 1, therefore
we can use the formula: ) - ¢" = 1+q'

We find:

Z(v +n) 72" = M JC £ e (1 - zeh) Tt 4)

21
n=0

Remark 1. The series Z:ozo(v+n)_szn is sometimes referred to as the function
D(z,s,v) (see for example [1]).

Choosing now z = 1 and v = 1 we have:
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Proof. Start again by equation 4, this time choose z = =1 and v = 1 to obtain:
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Use now the formula:
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proof of this equation can be found on our site.

This implies:
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which is exactly 7.
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