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Definition 1. The Riemann Zeta function is defined as
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for Re(s) > 1.

Theorem 1. The Riemann Zeta function satisfies the equation:
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for Re(s) > 1. Here ¢(n) denotes the Euler Totient Function. ¢(n) counts
the positive integers up to n and coprime to n. For example:

s(1)=1, ¢(2)=1, ¢(3)=2, 4(11)=10, ¢(24) =8, &(35) =24, &(37) = 36.

Proof. We start by proving that:
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where p(n) denotes the Mobius Function defined as:
1 ifn=1;
p(n) = {(=1)* if n is the product of k distinct primes; (4)
0 if n is divisible by a square > 1.
we add some details to the demonstration that can be found in [1]:
Rewrite the definition of ¢(n) as
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where (n, k) denotes the Greatest Common Denominator between n and
k. It is a known fact that: )
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(see [1] for the proof.) Therefore Equation 5 can be written as:
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Summing over all d that divide both n and k& means, for every divisor d of n,

summing over all those k in the range 1 < k£ < n which are multiples of d. If we

write k = gd then 1 < k <n if and only if 1 < ¢ < %. Hence we conclude:
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We will use Equation 3 to obtain our main formula:
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Call n = dk and notice that d|n if and only if n = dk, therefore summing over
all n is equivalent to summing over all possible d and k, that is to say:
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By definition, for Re(s) > 1 we have:
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also, it is true that:
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a demonstration of this equation can be found on our site.

Combining these two with equation 7 we conclude:
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