
De�nition 1. The Riemann Zeta function is de�ned as
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for Re�s� % 1.

Theorem 1. The Riemann Zeta function satis�es the equation:
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for Re�s� % 1. Here ϕ�n� denotes the Euler Totient Function. ϕ�n� counts

the positive integers up to n and coprime to n. For example:

ϕ�1� � 1, ϕ�2� � 1, ϕ�3� � 2, ϕ�11� � 10, ϕ�24� � 8, ϕ�35� � 24, ϕ�37� � 36.

Proof. We start by proving that:
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where µ�n� denotes the Möbius Function de�ned as:
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1 if n � 1;

��1�k if n is the product of k distinct primes;

0 if n is divisible by a square % 1.

(4)

we add some details to the demonstration that can be found in [1]:

Rewrite the de�nition of ϕ�n� as
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where �n, k� denotes the Greatest Common Denominator between n and
k. It is a known fact that:

=
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(see [1] for the proof.) Therefore Equation 5 can be written as:
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Summing over all d that divide both n and k means, for every divisor d of n,
summing over all those k in the range 1 & k & n which are multiples of d. If we
write k � qd then 1 & k & n if and only if 1 & q & n

d
. Hence we conclude:
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We will use Equation 3 to obtain our main formula:
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Call n � dk and notice that d¶n if and only if n � dk, therefore summing over
all n is equivalent to summing over all possible d and k, that is to say:
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By de�nition, for Re�s� % 1 we have:
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also, it is true that:
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a demonstration of this equation can be found on our site.

Combining these two with equation 7 we conclude:
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