POSITIVE
INCREMENT

Definition 1. The Riemann Zeta function is defined as
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for Re(s) > 1.

Theorem 1. If s is a complex number with Re(s) > 1, we have:
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where 1(s) is the Mobius function, defined as:

1 ifn=1
p(n) = {(=1)%  if n is the product of k distinct primes (3)
0 if n is divisible by a square > 1.

Proof. This proof requires the use of the Euler product for the Riemann zeta

function, that is:
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where the product runs over all prime numbers p and Re(s) > 1. The proof of
this classical result can be found on our site.

Equation 4 implies that:
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Let’s compute this product step by step:

Firstly, infinite times the product of 1 gives us 1:
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https://positiveincrement.com/eulers-product-formula

then we have the product of 1 times a negative fraction of a prime times infinite
times 1, which leaves us only with the fraction; this happens for every prime
(included 2) and therefore we have:
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We then find the same product, except this time with two negative fraction of
primes; once again this happens for every prime, hence:
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Iterating this process we have:
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which is exactly
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Notice that when n is divisible by a squared prime, it doesn’t appear in 5, indeed

in the series 6 those numbers have coefficient 0.
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This equation is just the beginning of the connection between these two
topics. If you want to know how the M&bius Function can lead to an equivalent
formulation of the Riemann Hypothesis check out our complete lesson!
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