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Definition 1. The Riemann Zeta function is defined as

for Re(s) > 1

Theorem 1.

for s # 1, where w(x) =Y o e ™.

n=1

Proof of this Theorem can be found in [1]. Building on Titchmarsh’s demon-
stration, we have added some meaningful details.

Proof. Begin by observing that if Re(s) > 0
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where in the last equality we used the Definition of the Gamma function.
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Hence if Re(s) > 1 we can sum over all n € N on both sides to obtain:
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here the inversion of the order of summation and integration is justified by
absolute convergence as, for Re(s) > 1:
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converges.


https://positiveincrement.com/definition-of-the-gamma-function

Define now w(x) as:

and write equation 3 as:

Consider briefly the Theta function:
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It’s clear that e =e and therefore ) " e =) 7€ )
hence:
e 2 = 2 e 2
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=w(z) + Z e ™ T 1 = 2w(z) + 1.
n=1
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Notice now that the function f(s) = ¢ °"" is a Schwartz Function and

therefore we can apply to it Poisson’s summation formula:

Theorem 2 (Poisson’s Summation Formula).
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If f(s) is a Schwartz function and f(s) is its Fourier transform, then:
> fmy= ) (k). (6)
n=—0oo k=—00
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In our case f(n) =e " *, with z > 0, therefore
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Hence, applying Theorem 6 to equation 5 implies:
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This, combined with equation 5, proves an important property of w(z):

2w(z) +1= % [Qw(%) + 1]
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Changing variable in the first integral to y =

(9)

Which is exactly 2.

The last integral converges for all values of s and so the formula holds, by
analytic continuation, for all s # 1. O

Notice that, computing the right-hand side for 1 — s gives us:
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So the right-hand side of 8 is unchanged if s is replaced by 1 — s, therefore so is
the left-hand side which means that:
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this is a less common form of Riemann’s Functional Equation.
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