
De�nition 1. The Riemann Zeta function is de�ned as
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Proof of this Theorem can be found in [1]. Building on Titchmarsh's demon-
stration, we have added some meaningful details.

Proof. Begin by observing that if Re�s� % 0
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where in the last equality we used the De�nition of the Gamma function.

Hence if Re�s� % 1 we can sum over all n " N on both sides to obtain:
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here the inversion of the order of summation and integration is justi�ed by
absolute convergence as, for Re�s� % 1:
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converges.
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De�ne now ω�x� as:
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and write equation 3 as:
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Consider brie�y the Theta function:
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Notice now that the function f�s� � e
�sπx

2

is a Schwartz Function and
therefore we can apply to it Poisson's summation formula:

Theorem 2 (Poisson's Summation Formula).

If f�s� is a Schwartz function and vf�s� is its Fourier transform, then:
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Hence, applying Theorem 6 to equation 5 implies:
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This, combined with equation 5, proves an important property of ω�x�:
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Going back to equation 4 we �nd:
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Changing variable in the �rst integral to y � 1
x
:
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Which is exactly 2.

The last integral converges for all values of s and so the formula holds, by
analytic continuation, for all s j 1.

Notice that, computing the right-hand side for 1 � s gives us:
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So the right-hand side of 8 is unchanged if s is replaced by 1� s, therefore so is
the left-hand side which means that:
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this is a less common form of Riemann's Functional Equation.
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