
De�nition 1. The Riemann Zeta function is de�ned as
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Theorem 1.
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for �1 $ Re�s� $ 0.

The following is a more detailed version of the proof found in [1].

Proof. Consider the equation:
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this is a corollary of the Representation by Euler-Maclaurin Formula, a detailed
proof can be found on our site.

Remember that since �x� � x �
1
2
is bounded, this integral converges for

Re�s� % 0 and converges uniformly in any �nite region to the right of Re�s� � 0,
this is therefore an analytic continuation of ζ�s� up to Re�s� � 0.

Actually, let's observe now that 3 gives the analytic continuation of ζ�s� for
Re�s� % �1, to do this we will check that the right hand side integral converges
when Re�s� % �1:
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we �nd that both functions are bounded, since by de�nition f�x� & 3
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and f1�x�

can be estimated using the fact that, for any integer k:
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where we used the fact that in the interval �k, k � 1� we have �y� � k.

This implies that:
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and f1�k� � 0 for any integer k ' 1.

Hence, integrating by parts:
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where we used that f1�1� � 0, f1�x� & 3
2
and that Re�s� % �1; this proves that

the integral in 3 converges for Re�s� % �1.

Also, when Re�s� $ 0:
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Hence, for �1 $ Re�s� $ 0, where both 3 and 6 are valid:
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