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Definition 1. The Riemann Zeta function is defined as

for Re(s) > 1.

Theorem 1.

for =1 < Re(s) < 0.
The following is a more detailed version of the proof found in [1].

Proof. Consider the equation:
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this is a corollary of the Representation by Euler-Maclaurin Formula, a detailed
proof can be found on our site.

Remember that since [z] — = + % is bounded, this integral converges for
Re(s) > 0 and converges uniformly in any finite region to the right of Re(s) = 0,
this is therefore an analytic continuation of {(s) up to Re(s) = 0.

Actually, let’s observe now that 3 gives the analytic continuation of {(s) for
Re(s) > —1, to do this we will check that the right hand side integral converges
when Re(s) > —1:
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we find that both functions are bounded, since by definition f(z) < % and f;(x)
can be estimated using the fact that, for any integer k:
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where we used the fact that in the interval [k, k + 1] we have [y] = k.

This implies that:
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and f;(k) = 0 for any integer k > 1.
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Hence, integrating by parts:
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where we used that f1(1) =0, fi(z) < g and that Re(s) > —1; this proves that
the integral in 3 converges for Re(s) > —1.

Also, when Re(s) < 0
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Hence, for —1 < Re(s) < 0, where both 3 and 6 are valid:
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