
Theorem 1.
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where the symbol "�" denotes asymptotically equal.

This is known as Stirling's Formula.

Proof. Remember the relation between the factorial and the Gamma Function:
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Notice that the terms outside the integral are exactly those that appear in
the �nal formula. Therefore we are left with proving that:
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We will prove that:
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Extend the function to the whole real axis by de�ning fn�x� as:
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so that

n! �
Ó
n �ne 	n E

�

��

fn�x�dx.
Fix x " R. Knowing that we have to compute the limit as n �� and x is

a �xed value, we can always suppose n much bigger than ¶x¶. In this case, we
only need the second part of the de�nition of fn�x�, that is to say:
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To complete the demonstration we have to show that passing the limit
through the integral sign is allowed.

We will use the dominated convergence Theorem:
Consider the function g�x� de�ned as:
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This function is positive and integrable on R.

We will prove that 0 & fn�x� & g�x� for all n and x, it's obvious for x & �
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To prove the inequality for x ' �
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log�1 � x� � x, if x ' 0.

We have to look at the two cases separately:

2



If �
Ó
n $ x & 0 then the di�erence log�fn�x�� � log�g�x�� is:
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which has �rst derivative:

n

1 � xÓ
n

1Ó
n
�

Ó
n � x �

nÓ
n � x

�

Ó
n � x �

n � �x � Ó
n��x � Ó

n�
x �

Ó
n

�
x
2

x �
Ó
n

positive for �
Ó
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Therefore the function log�fn�x��� log�g�x�� increases for �Ón $ x & 0 but
log�fn�0�� � log�g�0�� � 0 so the function has to be negative in this interval.

If x ' 0 then log�g�x�� � log�1� x�� x � f1�x� and the inequality is trivial
for n � 1.

For n % 1 consider this time the di�erence log�g�x�� � log�fn�x��:
log�1 � x� � x � log�fn�x�� � log�1 � x� � x � n log �1 � xÓ
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This function has �rst derivative:
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which is positive for x % 0 and n ' 2.

Therefore the function log�g�x�� � log�fn�x�� is increasing for x ' 0 and
n ' 2, but once again log�fn�0�� � log�g�0�� � 0 so the function is positive for
x % 0.

To conclude, Lebesgue's dominated convergence Theorem assures that:
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