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Theorem 1. The integral
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Definition 1. The Function defined for Re(s) > 0 as:

converges when Re(s) > 0.

I(s) := LOO e at (1)

is called the Gamma Function.

Proof. Fix N > 1 and break the integral into three parts:
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The first integral can be simply estimated, using the fact that when ¢t € [0;1]
we have e”* < 1; therefore:
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The middle integral also converges, as we can see that:
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To see the convergence of the last integral, notice first that, whenever
Re(s) > 0, we can find a big enough N such that:

whenever ¢t = N.



Proving this fact is simply a matter of computing:
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this was done using De I’'Hopital’s rule.

Hence, supposing that N is sufficiently big we can estimate the last term as:
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We have therefore proven that the whole integral converges. O
Theorem 2.
(s +1) =s[(s)
for Re(s) > 0.
Proof. Integrating the definition by parts we obtain:
I(s+1) = J e 'ttdt = |—e_tts “ ¢ SJ e = sT(s).
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Corollary 1.
I'(n+1)=mn! (2)
for all positive integers n.
Proof. This is obviously implied by the theorem above, plus the fact that:
r(1) = J e’ = J el =1
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Corollary 2. The Gamma function can be defined over the whole complex
plane, as a meromorphic function with simple poles at the megative integers
and zero.

Proof. Theorem 2 implies:

I(s) = F(s: 1)
!
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P(s) = s(s+1)
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I'(s+n)

I(s) =

for any positive integer n.

s(s+1)(s+2)-(s+n—-1)

By definition T'(s+n) is analytic for Re(s) > —n so the function on the right
is meromorphic for Re(s) > —n and has simple poles at 0, -1, =2, ---
The number n is arbitrary, therefore this equation extends the function to the
whole complex plane.
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